Results 121 to 130 of about 193,763 (276)
Hollow poly(heptazine imide) spheres are prepared through a novel approach that integrates hard templating with ionothermal synthesis. This method enables precise control over surface area, pore volume, hydrophilicity, light absorption, band position, and metal composition. These tunable properties facilitate the customized design of semiconductors for
Lingli Ni +10 more
wiley +1 more source
Micropatterned Biphasic Printed Electrodes for High‐Fidelity on‐Skin Bioelectronics
Micropatterned biphasic printed electrodes achieve unprecedented skin conformity and low impedance by combining liquid‐metal droplets with microstructured 3D lattices. This scalable approach enables high‐fidelity detection of ECG, EMG, and EEG signals, including alpha rhythms from the forehead, with long‐term comfort and stability.
Manuel Reis Carneiro +4 more
wiley +1 more source
The versatile precursor‐assisted soft sphere close packing during slot‐die coating is investigated with in situ X‐ray scattering. The soft crystallization pathways towards a close packing involve multistep structural transitions such as surface nucleation, in‐plane, and out‐of‐plane crystallization.
Guangjiu Pan +14 more
wiley +1 more source
The NNR‐n series of oligomeric nanographenes delivers exceptional emission performance. This work shows that this performance is originated by their ladder‐type structure, which effectively deactivates low‐frequency vibronic modes. This deactivation neglects the main pathway for non‐emissive deactivation, even in the near‐infrared region. The potential
Marcos Díaz‐Fernández +12 more
wiley +1 more source
[001]‐oriented Sb2Se3 film with improved crystallinity and adjusted composition is achieved via a new thermal treatment approach consisting of preliminary annealing of the Sb layer before its selenization. The findings of this work demonstrate enhanced charge carriers' transportation, a stable performance, and an improvement of H2 generation from ...
Magno B. Costa +7 more
wiley +1 more source
Edible electronics needs integrated logic circuits for computation and control. This work presents a potentially edible printed chitosan‐gated transistor with a design optimized for integration in circuits. Its implementation in integrated logic gates and circuits operating at low voltage (0.7 V) is demonstrated, as well as the compatibility with an ...
Giulia Coco +8 more
wiley +1 more source
The study presents biodegradable and recyclable mixed‐matrix membranes (MMMs), hydrogels, and cryogels using luminescent nanoscale metal‐organic frameworks (nMOFs) and biopolymers. These bio‐nMOF‐MMMs combine europium‐based nMOFs as probes for the status of the materials with the biopolymers agar and gelatine and present alternatives to conventional ...
Moritz Maxeiner +4 more
wiley +1 more source
A combinatorial library of dual‐functional antiviral oligomers incorporating N‐halamine and quaternary ammonium functionalities is developed for long‐lasting antiviral activity. The lead materials exhibit rapid and durable antiviral activity against SARS‐CoV‐2 variants and influenza H1N1, with 4 to 5 log reduction in viral copies at 5 mg mL−1 ...
Eid Nassar‐Marjiya +14 more
wiley +1 more source
This paper presents a novel self-calibrating paper counting device that integrates an embedded processor with a capacitance sensor chip. The device operates on the principle of capacitance measurement, detecting variations between two copper-coated ...
Junyuan Zheng +5 more
doaj +1 more source
Laser‐Induced Graphene from Waste Almond Shells
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova +9 more
wiley +1 more source

