Results 131 to 140 of about 69,725 (275)

Real‐Time 3D Ultrasound Imaging with an Ultra‐Sparse, Low Power Architecture

open access: yesAdvanced Healthcare Materials, EarlyView.
This article presents a novel, ultra‐sparse ultrasound architecture that paves the way for wearable real‐time 3D imaging. By integrating a unique convolutional array with chirped data acquisition, the system achieves high‐resolution volumetric scans at a fraction of the power and hardware complexity.
Colin Marcus   +9 more
wiley   +1 more source

Bioinspired Adaptive Sensors: A Review on Current Developments in Theory and Application

open access: yesAdvanced Materials, EarlyView.
This review comprehensively summarizes the recent progress in the design and fabrication of sensory‐adaptation‐inspired devices and highlights their valuable applications in electronic skin, wearable electronics, and machine vision. The existing challenges and future directions are addressed in aspects such as device performance optimization ...
Guodong Gong   +12 more
wiley   +1 more source

A novel high-sensitivity MOEMS gyroscope based on a double layer two-dimensional photonic crystal array

open access: yesInternational Journal of Optomechatronics
Most micro-electromechanical systems (MEMS) gyroscopes use capacitive detection to sense displacement from angular velocity, but parasitic capacitance and electromagnetic interference limit precision.
Jamal N. A. Hassan   +10 more
doaj   +1 more source

Transient Charging of Mixed Ionic‐Electronic Conductors by Anomalous Diffusion

open access: yesAdvanced Materials, EarlyView.
This article explores charge transport in mixed ionic‐electronic conductors (MIECs) through electrochemical impedance spectroscopy and transient current analysis. Focusing on PEDOT:PSS, WO3, and n‐doped PBDF, it uncovers the impact of anomalous diffusion via fractional modeling. The study reveals key correlations that deepen understanding and guide the
Heyi Zhang   +9 more
wiley   +1 more source

Kelvin Probe Force Microscopy in Bionanotechnology: Current Advances and Future Perspectives

open access: yesAdvanced Materials, EarlyView.
Kelvin probe force microscopy (KPFM) enables the nanoscale mapping of electrostatic surface potentials. While widely applied in materials science, its use in biological systems remains emerging. This review presents recent advances in KPFM applied to biological samples and provides a critical perspective on current limitations and future directions for
Ehsan Rahimi   +4 more
wiley   +1 more source

SiO2 Electret Formation via Stamp-Assisted Capacitive Coupling: A Chemophysical Surface Functionalisation

open access: yesInorganics
This work introduces a new method for creating patterned SiO2 electrets using stamp-assisted capacitive coupling (SACC), enabling surface functionalisation without direct electrode contact.
Edoardo Chini   +3 more
doaj   +1 more source

Self‐Assembled Inorganic Nanomembrane Tubes: Rolled‐Up Piezoelectrics for Microacoustic Wave‐Based Actuators and Sensors

open access: yesAdvanced Materials, EarlyView.
This study demonstrates a self‐assembly process to generate free‐standing piezoelectric nanomembranes, forming ultracompact microtubular acoustic wave sensors and actuators. The miniaturized 3D piezoelectric platform reported in this work can be applied in telecommunication, energy harvesting, and acoustofluidics. Moreover, the 3D self‐assembly can add
Raphaël C. L‐M. Doineau   +9 more
wiley   +1 more source

Polyimide‐Linked Hexaazatriphenylene‐Based Porous Organic Polymer with Multiple Redox‐Active Sites as a High‐Capacity Organic Cathode for Lithium‐Ion Batteries

open access: yesAdvanced Materials, EarlyView.
A high‐capacity polyimide‐linked porous organic polymer (HAT‐PTO) incorporating numerous redox‐active centers is synthesized via a hydrothermal reaction, delivering a high theoretical capacity of 484 mAh g−1. In situ hybridization with carboxyl‐functionalized multiwalled carbon nanotubes enhances conductivity and stability, achieving 397 mAh g−1 at C ...
Arindam Mal   +7 more
wiley   +1 more source

Electrically Readable Lateral Flow Assay Using Organic Transistors for Diagnostic Applications

open access: yesAdvanced Materials, EarlyView.
Electrolyte‐gated organic field‐effect transistors (EGOFETs) are integrated with lateral flow (LF) paper fluidics to create a reusable, portable, and low‐cost point‐of‐care (PoC) diagnostic test. The devices are validated for Human Immunoglobulin G detection, achieving high sensitivity (0.1 fm), selectivity, and reproducibility with rapid results in 20–
María Jesús Ortiz‐Aguayo   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy