Results 41 to 50 of about 38,304 (201)
In this manuscript, we present the general fractional derivative (FD) along with its fractional integral (FI), specifically the ψ-Caputo–Katugampola fractional derivative (ψ-CKFD).
Lakhlifa Sadek +2 more
doaj +1 more source
Error estimates of a high order numerical method for solving linear fractional differential equations [PDF]
In this paper, we first introduce an alternative proof of the error estimates of the numerical methods for solving linear fractional differential equations proposed in Diethelm [6] where a first-degree compound quadrature formula was used to approximate ...
Adolfsson +39 more
core +1 more source
We consider the predictor-corrector numerical methods for solving Caputo–Hadamard fractional differential equations with the graded meshes logtj=loga+logtNajNr,j=0,1,2,…,N with a≥1 and r≥1, where loga ...
Charles Wing Ho Green +2 more
semanticscholar +1 more source
ABSTRACT This paper investigates the generalized Hyers–Ulam stability of the Laplace equation subject to Neumann boundary conditions in the upper half‐space. Traditionally, Hyers–Ulam stability problems for differential equations are analyzed by examining the system's error, particularly in relation to a forcing term.
Dongseung Kang +2 more
wiley +1 more source
Multiterm Impulsive Caputo–Hadamard Type Differential Equations of Fractional Variable Order
In this study, we deal with an impulsive boundary value problem (BVP) for differential equations of variable fractional order involving the Caputo–Hadamard fractional derivative.
Amar Benkerrouche +3 more
doaj +1 more source
Abstract We study a nonlinear ψ−$$ \psi - $$ Hilfer fractional‐order delay integro‐differential equation ( ψ−$$ \psi - $$ Hilfer FrODIDE) that incorporates N−$$ N- $$ multiple variable time delays. Utilizing the ψ−$$ \psi - $$ Hilfer fractional derivative ( ψ−$$ \psi - $$ Hilfer‐FrD), we investigate the Ulam–Hyers––Rassias (U–H–R), semi‐Ulam–Hyers ...
Cemil Tunç, Osman Tunç
wiley +1 more source
In this study, we aimed to derive analytical solutions for a system of nonlinear time-fractional Navier–Stokes equations in Cartesian coordinates by employing the residual power series method.
Omar Barkat, Awatif Muflih Alqahtani
doaj +1 more source
New study on Caputo-Hadamard type fractional Neutral Integro-Differential equations [PDF]
In this work, we focus on the analysis of fractional-order neutral integro-differential equations using the Caputo-Hadamard fractional derivative. We employed the topological degree method (TDM) to derive results and solutions for these equations.
Emimal Navajothi, Selvi Sellappan
doaj +1 more source
In this paper we obtain new estimates of the Hadamard fractional derivatives of a function at its extreme points. The extremum principle is then applied to show that the initial-boundary-value problem for linear and nonlinear time-fractional diffusion ...
Kirane, Mokhtar, Torebek, Berikbol T.
core +1 more source
Studies on Fractional Differential Equations With Functional Boundary Condition by Inverse Operators
ABSTRACT Fractional differential equations (FDEs) generalize classical integer‐order calculus to noninteger orders, enabling the modeling of complex phenomena that classical equations cannot fully capture. Their study has become essential across science, engineering, and mathematics due to their unique ability to describe systems with nonlocal ...
Chenkuan Li
wiley +1 more source

