Results 21 to 30 of about 56,071 (293)
Analytical Solutions of a Class of Fluids Models with the Caputo Fractional Derivative
This paper studies the analytical solutions of the fractional fluid models described by the Caputo derivative. We combine the Fourier sine and the Laplace transforms.
Ndolane Sene
doaj +2 more sources
The fractional input stability of the electrical circuit equations described by the fractional derivative operators has been investigated. The Riemann-Liouville and the Caputo fractional derivative operators have been used.
Ndolane Sene
doaj +2 more sources
Variational Problems Involving a Caputo-Type Fractional Derivative [PDF]
The aim of this paper is to study certain problems of calculus of variations, that are dependent upon a Lagrange function on a Caputo-type fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo--Hadamard fractional derivatives, that are dependent on a real parameter ro.
Ricardo Almeida
openalex +5 more sources
Modeling and analysis of the dynamics of novel coronavirus (COVID-19) with Caputo fractional derivative. [PDF]
Ali A+4 more
europepmc +2 more sources
Dynamics of the Caputo fractional derivative
Abstract In this article we analyse the dynamical behaviour of the Caputo complex fractional derivative. We prove that the Caputo complex fractional derivative operator is Devaney chaotic in the Mittag-Leffler Caputo space. We will also show that a tuple of different iterates of a Caputo derivative multiple is disjoint hypercyclic.
M. Murillo‐Arcila+2 more
semanticscholar +2 more sources
An analytical solution for the Caputo type generalized fractional evolution equation
The Caputo type generalized fractional evolution equation is studied in this paper. Since the Caputo type generalized fractional derivative is well-known for being the generalization of Caputo fractional derivatives, this article’s studies contribute to ...
Wannika Sawangtong, Panumart Sawangtong
doaj +1 more source
Fractional Telegraph Equation with the Caputo Derivative
The Cauchy problem for the telegraph equation (Dtρ)2u(t)+2αDtρu(t)+Au(t)=f(t) (0<t≤T,0<ρ<1, α>0), with the Caputo derivative is considered. Here, A is a selfadjoint positive operator, acting in a Hilbert space, H; Dt is the Caputo fractional derivative.
Ravshan Ashurov, Rajapboy Saparbayev
openaire +3 more sources
A fractional model of cancer-immune system with Caputo and Caputo–Fabrizio derivatives [PDF]
Recently, it is important to try to understand diseases with large mortality rates worldwide, such as infectious disease and cancer. For this reason, mathematical modeling can be used to comment on diseases that adversely affect all people. So, this paper discuss mathematical model presented for the first time that examines the interaction between ...
Uçar, Esmehan, Özdemir, Necati
openaire +5 more sources
Generalized Laplace transform and tempered ψ-Caputo fractional derivative
In this paper, images of the tempered Ψ-Hilfer fractional integral and the tempered Ψ-Caputo fractional derivative under the generalized Laplace transform are derived.
M. Medveď, M. Pospíšil
semanticscholar +1 more source
A High Order Formula to Approximate the Caputo Fractional Derivative
Reza Mokhtari, Farinaz Mostajeran
openalex +2 more sources