Results 281 to 290 of about 4,868,763 (402)

Use of Recovered Carbon Black from Waste Tires in Triple Mesoscopic Stack Perovskite Solar Cells. [PDF]

open access: yesACS Sustain Resour Manag
Iglesias-Porras S   +7 more
europepmc   +1 more source

Artificial Intelligence‐Driven Development in Rechargeable Battery Materials: Progress, Challenges, and Future Perspectives

open access: yesAdvanced Functional Materials, EarlyView.
AI is transforming the research paradigm of battery materials and reshaping the entire landscape of battery technology. This comprehensive review summarizes the cutting‐edge applications of AI in the advancement of battery materials, underscores the critical challenges faced in harnessing the full potential of AI, and proposes strategic guidance for ...
Qingyun Hu   +5 more
wiley   +1 more source

Calcium Imparts Advanced Functionalities to Silk Hydrogels for Biofabrication and Biomedical Innovation

open access: yesAdvanced Functional Materials, EarlyView.
The addition of calcium ions to silk fibroin enhances the hydrogel properties and, when combined with visible light crosslinking, enables compatibility with advanced light‐based fabrication techniques. Calcium ions extend the shelf‐life of silk and facilitate the fabrication of multizonal, multilayered constructs for advanced stimuli‐responsive ...
Hien A. Tran   +11 more
wiley   +1 more source

All‐Material Crosslinked Solid Polymer Electrolytes for High‐Performance and Flexible Lithium Metal Battery

open access: yesAdvanced Functional Materials, EarlyView.
A novel solid polymer electrolyte (SPE) to overcome interface instability in high‐energy‐density lithium metal batteries has been developed. By enhancing ionic conductivity, mechanical elasticity, and adhesion strength through all‐material UV‐crosslinking, the SPE ensures uniform lithium‐ion flow and stable performance—even after bending or cutting ...
Sung Yeon Bae   +7 more
wiley   +1 more source

Atomically Dispersed Copper Electrocatalysts with Proton‐feeding Centers for Efficient Ammonia Synthesis by Nitrate Electroreduction

open access: yesAdvanced Functional Materials, EarlyView.
Rationally‐designed advanced carbon‐based single‐atom catalysts with isolated CuN2O2 active sites anchored in N,O‐doped porous carbon facilitate water dissociation and nitrate reduction, accelerating proton supply for efficient electrosynthesis of ammonia.
Yan Li   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy