Results 71 to 80 of about 1,160,343 (350)

Population of Nonmetallic Inclusions in Liquid High‐Silicon Electrical Steel in Contact With MgO–C Refractories Based on Recyclates and Environmentally Friendly Binders

open access: yesAdvanced Engineering Materials, EarlyView.
The formation of nonmetallic inclusions (NMIs) was investigated in this study, carrying out immersion tests for 30 min at a temperature of 1600°C with liquid high‐silicon electrical steel (Si ≈ 3 mass‐%) and different MgO–C refractories. Conventional MgO–C refractories were considered, as well as MgO–C refractories containing MgO–C recyclate and ...
Lukas Neubert   +6 more
wiley   +1 more source

Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

open access: yesNature Communications, 2017
The role of oxygen vacancies in carbon dioxide reduction remains somewhat unclear. Here, the authors fabricate vacancy-rich and vacancy-poor Co3O4single-unit-cell layers, and demonstrate by X-ray absorption and DFT that the material is a promising ...
Shan Gao   +10 more
doaj   +1 more source

In Situ Constructed Magnetic Core‐Shell Hydrogen‐Bonded Organic Framework‐on‐Metal–Organic Framework Structure: an Efficient Catalyst for Peroxymonosulfate Activation

open access: yesAdvanced Functional Materials, EarlyView.
In this work, a magnetic core‐shell catalyst (HOF‐on‐Fe3O4/ZIF‐67) is successfully synthesized, consisting of a metal–organic framework (ZIF‐67) with magnetic Fe3O4 as the core and a porous hydrogen‐bonded organic framework (HOF) as the shell. The catalyst efficiently activated peroxymonosulfate, resulting in rapid and effective removal of water ...
Yingying Du   +4 more
wiley   +1 more source

Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process [PDF]

open access: yes, 2017
Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of ...
Efimova, Elena   +5 more
core   +2 more sources

Cu‐Based MOF/TiO2 Composite Nanomaterials for Photocatalytic Hydrogen Generation and the Role of Copper

open access: yesAdvanced Functional Materials, EarlyView.
HKUST‐1/TiO2 composite materials show a very high photocatalytic hydrogen evolution rate which increases as a function of the irradiation time until reaching a plateau and even surpasses the performance of the 1%Pt/TiO2 material after three photocatalytic cycles.
Alisha Khan   +9 more
wiley   +1 more source

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products

open access: yesNature Communications, 2020
Selective reduction of carbon dioxide to high-value products is key for advancing carbon capture and utilization technologies. Here the authors prepare a copper catalyst for electrocatalytic conversion of carbon dioxide to C2+ products with enhanced ...
Taehee Kim, G. Tayhas R. Palmore
doaj   +1 more source

Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate [PDF]

open access: yes, 2017
Electrochemical reduction of carbon dioxide (CO2RR) to formate provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks powered using renewable electricity.
Banis, MN   +17 more
core   +2 more sources

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

MnI‐Functionalized Covalent Organic Framework as Efficient Electrocatalyst for CO2 Reduction in a Catholyte‐Free Zero‐Gap Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates the successful integration of a phenanthroline‐based 2D COF with MnI catalytic sites into a catholyte‐free membrane‐electrode‐assembly cell for CO2 electroreduction. The crystalline COF actively suppresses Mn⁰–Mn⁰ dimerization, achieving a turnover frequency of 617 h⁻¹ at 2.8 V (full‐cell potential), and enabling stable operation.
Laura Spies   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy