Results 221 to 230 of about 806,796 (306)
Machine learning models for predicting rural residential carbon emissions and optimising spatial forms. [PDF]
Cui X, Xu Y, Sun L, Yao T.
europepmc +1 more source
It is reported that the ferroelectric switching behavior of rhombohedral (3R) phase transition metal dichalcogenide (TMD) bilayers strongly depends on their domain structures. Single‐domain TMDs (SD‐TMDs) with domain‐wall‐free structures exhibit robust and stable polarization switching, whereas poly‐domain TMDs (PD‐TMDs) with randomly distributed ...
Ji‐Hwan Baek +8 more
wiley +1 more source
An integrated framework for reducing construction carbon emissions using real-time monitoring and econometrics. [PDF]
Bai F +7 more
europepmc +1 more source
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou +8 more
wiley +1 more source
Digital innovation and corporate carbon emissions from the perspective of asymmetric supply chain relations. [PDF]
Fuxian Z, Xiaoli X.
europepmc +1 more source
Powering the Future: A Cobalt‐Based Catalyst for Longer‐Lasting Zinc–Air Batteries
A novel N‐doped graphitic shell‐encapsulated Co catalyst reveals superior bifunctional ORR/OER activity in alkaline media, empowering outstanding liquid and quasi‐solid‐state ZAB activity. The system delivers long‐term durability, a peak power density of 127 mW cm−2 and successfully powers an LED and a mini fan.
Manami Banerjee +10 more
wiley +1 more source
Effect and mechanism of digital infrastructure impacts the urban synergistic reduction of pollutant and carbon emissions. [PDF]
Ma Y, Dong D, Ma Y, Zhang F.
europepmc +1 more source
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu +14 more
wiley +1 more source
Editorial Note: Energy use and the role of per capita income on carbon emissions in African countries. [PDF]
PLOS One Editors.
europepmc +1 more source

