Results 251 to 260 of about 172,563 (352)

3D‐Printed Titanium Implants with Bioactive Peptide‐Polysaccharide Scaffolds for Personalized Bone Reconstruction

open access: yesAdvanced Healthcare Materials, EarlyView.
Porous 3D‐printed titanium implants are made bioactive by integration with a supramolecular peptide‐hyaluronic acid nanofibrillar scaffold, without the addition of exogenous cells or growth factors. Uniform filling of the implant architecture promotes vascularized, spatially homogeneous bone regeneration, significantly enhancing osteogenesis throughout
Noam Rattner   +8 more
wiley   +1 more source

Oxygen and ROS Delivery for Infected Wound Healing and Future Prospects

open access: yesAdvanced Healthcare Materials, EarlyView.
Bacterial infection is a major driver of delayed wound healing and postsurgical readmissions; with rising antibiotic resistance, solid peroxide–releasing biomaterials offer sustained delivery of ROS/O2 for antimicrobial control and microenvironmental modulation.
Ayden Watt   +7 more
wiley   +1 more source

Tunable Bioresorbable Scaffolds With Marine Sulfated Polysaccharides for Small‐Caliber Vascular Grafts: A Multi‐Layered Strategy Combining Electrospinning and 4‐Axis Printing

open access: yesAdvanced Healthcare Materials, EarlyView.
A multilayered small‐caliber vascular scaffold combining electrospinning and 4‐axis printing is developed and biofunctionalized with marine sulfated polysaccharides from Holothuria tubulosa. The resulting construct exhibits enhanced hemocompatibility, tunable mechanical properties, and supports endothelial and smooth muscle cell adhesion and ...
Gabriele Obino   +9 more
wiley   +1 more source

Nb2C‐Reinforced Hydrogel Microneedle as Dual ROS‐Scavenging Platform to Promote Diabetic Wound Healing

open access: yesAdvanced Healthcare Materials, EarlyView.
An advanced microneedle patch integrating niobium carbide nanosheets and curcumin is engineered for diabetic wound healing. The system enables dual ROS scavenging and NIR‐enhanced antimicrobial activity, effectively rebalancing the oxidative microenvironment, promoting macrophage repolarization and angiogenesis, and accelerating full‐thickness wound ...
Zhi Zheng   +12 more
wiley   +1 more source

Flexible Polypyrrole‐Based pH Sensors via Oxidative Chemical Vapor Deposition

open access: yesAdvanced Healthcare Materials, EarlyView.
Oxidative chemical vapor deposition (oCVD) of polypyrrole (PPy) thin films yields flexible, electrically conductive, and biocompatible pH sensors for monitoring on‐skin biological events. The highly sensitive, oCVD PPy skin‐conformal sensors enable real‐time, spatially resolved sensing of dynamic pH changes within physiologically relevant ranges (4–9 ...
Adrivit Mukherjee   +15 more
wiley   +1 more source

Home - About - Disclaimer - Privacy