Results 181 to 190 of about 536,340 (350)

Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere   +5 more
wiley   +1 more source

Robust Bio‐Textiles Via Mycelium‐Cellulose Interface Engineering

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a new class of sustainable textiles by growing mycelium, the root‐like structure of fungi, into cellulose‐based fabrics. This semi‐interpenetrating mycelium‐cellulose fiber network combines the strength and breathability of natural fibers with the water‐resistant and adhesive properties of mycelium, resulting in a robust, scalable,
Wenhui Xu   +7 more
wiley   +1 more source

Prospects for using carbon-carbon composites for EMI shielding [PDF]

open access: yes
Since pyrolyzed carbon has a higher electrical conductivity than most polymers, carbon-carbon composites would be expected to have higher electromagnetic interference (EMI) shielding ability than polymeric resin composites.
Gaier, James R.
core   +1 more source

Electrochemical Formation of BiVO4/BiPO4 Photoanodes for Enhanced Selectivity toward H2O2 Generation

open access: yesAdvanced Functional Materials, EarlyView.
In acidic KPi, V dissolves from the BiVO4 lattice, while adsorbed phosphate reacts with the electrode under an external bias, forming a BiPO4 surface layer. This BiPO4 layer exhibits stronger bicarbonate adsorption, redirecting the water oxidation pathway toward two‐electron H2O2 production.
Kaijian Zhu   +12 more
wiley   +1 more source

A Dual-Barrel Carbon Fiber Microelectrode for Generator-Collector Experiments. [PDF]

open access: yesACS Omega
Falcoswki PC   +4 more
europepmc   +1 more source

An In Situ Study of the Topochemical Transformation of Hybrid Layered Hydroxides Into Metallic Nanocomposites

open access: yesAdvanced Functional Materials, EarlyView.
Herein, the topochemical transformation of cobalt‐based layered hydroxides into nanocomposites is investigated using advanced real‐time characterization techniques combined with thermogravimetric analysis. The study reveals how interlayer carboxylic acids direct the transformation pathway, highlighting the role of carbon content and anion length. These
Camilo Jaramillo‐Hernández   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy