Results 291 to 300 of about 4,082,528 (407)

Controlled Magnesium Ion Delivery via Mg‐Sputtered Nerve Conduit for Enhancing Peripheral Nerve Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces a controllable degradation system for Mg‐based biomaterials using sputtering technology, marking a significant advancement in nerve regeneration research. The Mg‐sputtered nerve conduits demonstrate enhanced biocompatibility, biofunctionality, mechanical compatibility, and precise magnesium release, resulting in improved axonal ...
Hyewon Kim   +12 more
wiley   +1 more source

Nanomaterial‐Enhanced Biosensing: Mechanisms and Emerging Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
Nanomaterial integration transforms biosensor capabilities through enhanced signal transduction, sensitivity, and selectivity. This review analyzes how nanoscale materials—from nanoparticles to nanosheets—leverage unique physicochemical properties to revolutionize electrochemical, optical, and electrical biosensing.
Younghak Cho   +3 more
wiley   +1 more source

Carbon‐Based Flexible Electrode for Efficient Electrochemical Generation of Reactive Chlorine Species in Tumor Therapy

open access: yesAdvanced Healthcare Materials, EarlyView.
A flexible electrode loaded with a carbon nanowire network (CC@C‐NWN) is developed for electrochemically generating reactive chlorine species (RCS) from abundant chloride ions in body fluids for tumor therapy. CC@C‐NWN enhances chlorine evolution, inducing redox dysregulation and synergistic apoptosis‐ferroptosis in tumor cells.
Cuinan Jiang   +10 more
wiley   +1 more source

Si Inhibited Osteoclastogenesis: The Role of Fe and the Fenton Reaction

open access: yesAdvanced Healthcare Materials, EarlyView.
Silicate (Si) inhibition of osteoclastogenesis, is mediated by Fe. Si chemical interactions with Fe inhibit the Fenton reaction and intercellular ROS availability. This reduction in ROS availability inhibits osteoclastogenesis. The addition of Fe, in Si‐inhibited osteoclast cultures, restores the Fenton reaction, and osteoclastogenesis.
Yutong Li   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy