Results 181 to 190 of about 116,699 (313)

Annexin A13 Protects Against Acute Kidney Injury by Inactivating TGF‐β/Smad3 Signaling

open access: yesAdvanced Science, EarlyView.
ANXA13 is negatively regulated by Smad3 and exerts its protective role in AKI by inactivating TGF‐β/Smad3 signaling and Smad3‐p21 cell cycle arrest pathway through binding to TβRI, inhibiting the interaction between TβRI and TβRII, thereby suppressing TβRI phosporylation.
Jiaxiao Li   +12 more
wiley   +1 more source

Construction of a Multitissue Cell Atlas Reveals Cell‐Type‐Specific Regulation of Molecular and Complex Phenotypes in Pigs

open access: yesAdvanced Science, EarlyView.
This research conducts an in‐depth investigation of cell‐type‐specific regulatory mechanisms underlying molecular and complex phenotypes through integrative analysis of multitissue single‐nucleus RNA sequencing, bulk RNA‐seq, and genome‐wide association study (GWAS) data in pigs.
Lijuan Chen   +31 more
wiley   +1 more source

Targeting Adipose Tissue Function Protects Against Heart Failure with Preserved Ejection Fraction

open access: yesAdvanced Science, EarlyView.
This study explores the role adipose tissue (AT) phenotypes have in determining cardiovascular outcomes in an obesity‐related heart failure with preserved ejection fraction (HFpEF) model. Pharmacological induction of thermogenesis promoted resilience to HFpEF‐induced remodeling of AT and conferred cardioprotection. Surgical and genetic models confirmed
Jordan Jousma   +11 more
wiley   +1 more source

Mitochondrial Calcium Uniporter Drives Chemoresistance in Pancreatic Cancer via Glutathione‐Mediated Stemness Maintenance

open access: yesAdvanced Science, EarlyView.
PDAC has a poor prognosis due to chemoresistance. We revealed that MCU upregulation is associated with chemoresistance and stemness in PDAC. MCU‐mediated Ca2+ influx induced ER stress, activating the PERK‐ATF4/NRF2 axis to enhance PSAT1/SLC711 expression and glutathione synthesis, reducing ROS and maintaining stemness.
Zekun Li   +17 more
wiley   +1 more source

Tendon Organoids Enable Functional Tendon Rejuvenation Through ALKBH5‐Dependent RNA Demethylation

open access: yesAdvanced Science, EarlyView.
FT organoids reverse the aged phenotype of tendon cells, reinstating a fetal‐like state. This breakthrough establishes a potent cell source for tendon tissue engineering, effectively advancing regenerative medicine. ABSTRACT Adult tendon injuries pose a major clinical challenge due to limited self‐repair capacity, resulting in suboptimal regeneration ...
Tian Qin   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy