Results 111 to 120 of about 182,560 (273)
This article summarizes significant technological advancements in materials, photonic devices, and bio‐interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on‐skin health monitoring.
Seunghyeb Ban +5 more
wiley +1 more source
A schematic illustration of how noble metals can be used to create nanoparticles (NPs) or nanoclusters (NCs). Noble metal NPs, due to their plasmonic properties, enable photothermal therapy and surface‐enhanced Raman scattering (SERS). In contrast, NCs, which lack a plasmonic resonance band, exhibit fluorescence, making them ideal for bioimaging ...
David Esporrín‐Ubieto +3 more
wiley +1 more source
This study presents an implantable reinforced cardiac patch (RCPatch) combining volumetrically 3D‐printed metamaterials with melt‐electrowritten (MEW) meshes. The design integrates tunable stiff polymer structures with soft, cell‐laden hydrogels. The RCPatch withstands suturing, intraventricular pressure, and cardiac contraction in a large animal ...
Lewis S. Jones +12 more
wiley +1 more source
Sacrificial Biofabrication for Vascularization: Concept, Materials, Technologies, and Applications
Vasculature is indispensable for tissue viability in regenerative medicine. The sacrificial biofabrication enables precise fabrication of vascular channels by using temporary templates that are subsequently removed. This review defines the concept and delves into sacrificial materials, surrounding materials, fabrication technologies, and biomedical ...
Jiezhong Shi +7 more
wiley +1 more source
Galvanic‐Cell‐Based Self‐Powered Bioelectronic Devices
The emerging galvanic‐cell‐based self‐powered bioelectronics for biomedical applications with passive and active control strategies are summarized. In addition, the challenges and opportunities for galvanic devices are also discussed. Abstract Bioelectronic devices hold significant promise for advancing biomedical technologies, addressing critical ...
Yu Xin +4 more
wiley +1 more source
Peptide Amphiphiles Hitchhike on Endogenous Biomolecules for Enhanced Cancer Imaging and Therapy
Weakly assembled peptide amphiphile nanostructures disassemble in circulation and reassemble with blood biomolecules, mainly lipoproteins. Binding to blood biomolecules prolongs blood circulation and improves accumulation in solid tumors. In the tumor microenvironment, peptide amphiphiles assemble with cholesterol‐rich domains of cell membranes ...
Li Xiang +19 more
wiley +1 more source
Cell‐Stress‐Free Percutaneous Bioelectrodes
A structurally adaptive soft microneedle bioelectrode is developed with an effervescent sacrificial core that dissolves after insertion, leaving an ultrathin and highly compliant electrode integrated with skin. This design enables ultra‐flexible, cell‐stress‐free, stable, and high‐fidelity electrophysiological monitoring under dynamic conditions such ...
Jungho Lee +14 more
wiley +1 more source
This review examines hydrogel‐based technologies driven by environmental stimuli and emphasizes their unique contributions to energy conversion. It provides insights into design strategies and recent advancements in functional hydrogels, highlighting opportunities and challenges in this field.
Wanheng Lu +5 more
wiley +1 more source
An ideal implant should mimic native tissues such that it can integrate, sense, heal, and continue to function, i.e., be autonomous. Although early, there are good steps taken in this way, e.g., the development of stimuli‐responsive, self‐powering, self‐actuating, self‐healing, self‐regenerating, and self‐aware implants.
Jagan Mohan Dodda +5 more
wiley +1 more source

