Results 41 to 50 of about 12,576,498 (281)
Regularity for quasilinear PDEs in Carnot groups via Riemannian approximation
We study the interior regularity of weak solutions to subelliptic quasilinear PDEs in Carnot groups of the formΣi=1m1Xi (Φ(|∇Hu|2)Xiu) = 0. Here ∇Hu = (X1u,...,Xmiu) is the horizontal gradient, δ > 0 and the exponent p ∈ [2, p*), where p* depends on ...
András Domokos, Juan J. Manfredi
doaj +1 more source
Nonlocal diffusion equations in Carnot groups
Let $G$ be a Carnot group. We study nonlocal diffusion equations in a domain $ $ of $G$ of the form $$ u_t^ (x,t)=\int_{G}\frac{1}{ ^2}K_ (x,y)(u^ (y,t)-u^ (x,t))\,dy, \qquad x\in $$ with $u^ =g(x,t)$ for $x\notin $. For appropriate rescaled kernel $K_ $ we prove that solutions $u^ $, when $ \rightarrow0$, uniformly approximate the ...
Isolda E. Cardoso, Raúl E. Vidal
openaire +2 more sources
Pliability, or the whitney extension theorem for curves in carnot groups [PDF]
The Whitney extension theorem is a classical result in analysis giving a necessary and sufficient condition for a function defined on a closed set to be extendable to the whole space with a given class of regularity.
Juillet, Nicolas, Sigalotti, Mario
core +5 more sources
Abstract We characterize Carnot groups admitting a 1-quasiconformal metric inversion as the Lie groups of Heisenberg type whose Lie algebras satisfy the J2-condition, thus characterizing a special case of inversion invariant bi-Lipschitz homogeneity.
openaire +4 more sources
Sharp Hardy Identities and Inequalities on Carnot Groups
In this paper we establish general weighted Hardy identities for several subelliptic settings including Hardy identities on the Heisenberg group, Carnot groups with respect to a homogeneous gauge and Carnot–Carathéodory metric, general nilpotent groups ...
Flynn Joshua, Lam Nguyen, Lu Guozhen
doaj +1 more source
Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group [PDF]
We use a Riemannnian approximation scheme to define a notion of intrinsic Gaussian curvature for a Euclidean C2 -smooth surface in the Heisenberg group H away from characteristic points, and a notion of intrinsic signed geodesic curvature for Euclidean ...
Balogh, Zoltan M. +2 more
core +1 more source
Subelliptic and parametric equations on Carnot groups [PDF]
This article concerns a class of elliptic equations on Carnot groups depending on one real parameter. Our approach is based on variational methods. More precisely, we establish the existence of at least two weak solutions for the treated problem by using a direct consequence of the celebrated Pucci-Serrin theorem and of a local minimum result for ...
Molica Bisci G, Ferrara M
openaire +5 more sources
Isodiametric inequality in Carnot groups
The classical isodiametric inequality in the Euclidean space says that balls maximize the volume among all sets with a given diameter. We consider in this paper the case of Carnot groups.
Rigot, Severine
core +4 more sources
Intrinsic regular surfaces in Carnot groups
A Carnot group $G$ is a simply connected, nilpotent Lie group with stratified Lie algebra. Intrinsic regular surfaces in Carnot groups play the same role as C1 surfaces in Euclidean spaces.
Daniela Di Donato
doaj +1 more source
X-states from a finite geometric perspective
It is found that 15 different types of two-qubit X-states split naturally into two sets (of cardinality 9 and 6) once their entanglement properties are taken into account.
Colm Kelleher +3 more
doaj +1 more source

