Results 51 to 60 of about 12,322,898 (284)
Monge's transport problem in the Heisenberg group [PDF]
We prove the existence of solutions to Monge transport problem between two compactly supported Borel probability measures in the Heisenberg group equipped with its Carnot-Caratheodory distance assuming that the initial measure is absolutely continuous ...
Ambrosio B.+15 more
core +6 more sources
Identifying 1-rectifiable measures in Carnot groups
We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger and R.
Badger Matthew, Li Sean, Zimmerman Scott
doaj +1 more source
A metric characterization of Carnot groups [PDF]
We give a short axiomatic introduction to Carnot groups and their subRiemannian and subFinsler geometry. We explain how such spaces can be metrically described as exactly those proper geodesic spaces that admit dilations and are isometrically homogeneous.
openaire +3 more sources
Quasiconformal maps on a 2-step Carnot group
We find all global quasiconformal maps (with respect to the Carnot metric) on a particular 2-step Carnot group.
Christopher J. Gardiner
semanticscholar +1 more source
Nonlocal diffusion equations in Carnot groups
Let $G$ be a Carnot group. We study nonlocal diffusion equations in a domain $ $ of $G$ of the form $$ u_t^ (x,t)=\int_{G}\frac{1}{ ^2}K_ (x,y)(u^ (y,t)-u^ (x,t))\,dy, \qquad x\in $$ with $u^ =g(x,t)$ for $x\notin $. For appropriate rescaled kernel $K_ $ we prove that solutions $u^ $, when $ \rightarrow0$, uniformly approximate the ...
Isolda E. Cardoso, Raúl E. Vidal
openaire +2 more sources
Conformal and CR mappings on Carnot groups [PDF]
We consider a class of stratified groups with a CR structure and a compatible control distance. For these Lie groups we show that the space of conformal maps coincide with the space of CR and anti-CR diffeomorphisms. Furthermore, we prove that on products of such groups, all CR and anti-CR maps are product maps, up to a permutation isomorphism, and ...
Qingyan Wu+3 more
openaire +3 more sources
On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups
In this work, our main concern is to study the existence and multiplicity of solutions for the following sub-elliptic system with Hardy type potentials and multiple critical exponents on Carnot group $ \begin{equation*} \left\{\begin{aligned} & ...
Jinguo Zhang , Shuhai Zhu
doaj +1 more source
Yamabe-Type Equations on Carnot Groups [PDF]
This article is concerned with a class of elliptic equations on Carnot groups depending of one real positive parameter and involving a critical nonlinearity. As a special case of our results we prove the existence of at least one nontrivial solution for a subelliptic critical equation defined on a smooth and bounded domain $D$ of the {Heisenberg group}
Molica Bisci G, Repovs D
openaire +6 more sources
The Traveling Salesman Theorem in Carnot groups [PDF]
Let $\mathbb{G}$ be any Carnot group. We prove that, if a subset of $\mathbb{G}$ is contained in a rectifiable curve, then it satisfies Peter Jones' geometric lemma with some natural modifications. We thus prove one direction of the Traveling Salesman Theorem in $\mathbb{G}$.
Sean Li+2 more
openaire +3 more sources
Regularity for quasilinear PDEs in Carnot groups via Riemannian approximation
We study the interior regularity of weak solutions to subelliptic quasilinear PDEs in Carnot groups of the formΣi=1m1Xi (Φ(|∇Hu|2)Xiu) = 0. Here ∇Hu = (X1u,...,Xmiu) is the horizontal gradient, δ > 0 and the exponent p ∈ [2, p*), where p* depends on ...
András Domokos, Juan J. Manfredi
doaj +1 more source