Results 41 to 50 of about 14,219 (239)

About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics

open access: yesAIMS Mathematics, 2023
For some class of 2-step Carnot groups $ D_n $ with 1-dimensional centre we find the exact values of the constants in $ (1, q_2) $-generalized triangle inequality for their $ \text{Box} $-quasimetrics $ \rho_{\text{Box}_{D_n}} $. Using this result we get
Alexander Greshnov, Vladimir Potapov
doaj   +1 more source

A sufficient condition for nonrigidity of Carnot groups [PDF]

open access: yesMathematische Zeitschrift, 2007
In this article we consider contact mappings on Carnot groups. Namely, we are interested in those mappings whose differential preserves the horizontal space, defined by the first stratum of the natural stratification of the Lie algebra of a Carnot group.
Alessandro Ottazzi, Alessandro Ottazzi
openaire   +4 more sources

BiLipschitz Decomposition of Lipschitz Maps between Carnot Groups

open access: yesAnalysis and Geometry in Metric Spaces, 2015
Let f : G → H be a Lipschitz map between two Carnot groups. We show that if B is a ball of G, then there exists a subset Z ⊂ B, whose image in H under f has small Hausdorff content, such that B\Z can be decomposed into a controlled number of pieces, the ...
Li Sean
doaj   +1 more source

Quasisymmetric maps of boundaries of amenable hyperbolic groups [PDF]

open access: yes, 2014
In this paper we show that if $Y=N \times \mathbb{Q}_m$ is a metric space where $N$ is a Carnot group endowed with the Carnot-Caratheodory metric then any quasisymmetric map of $Y$ is actually bilipschitz. The key observation is that $Y$ is the parabolic
Dymarz, Tullia
core   +1 more source

Sard Property for the endpoint map on some Carnot groups [PDF]

open access: yes, 2015
In Carnot-Caratheodory or sub-Riemannian geometry, one of the major open problems is whether the conclusions of Sard's theorem holds for the endpoint map, a canonical map from an infinite-dimensional path space to the underlying finite-dimensional ...
Donne, Enrico Le   +4 more
core   +3 more sources

Nonlocal diffusion equations in Carnot groups

open access: yesRendiconti del Circolo Matematico di Palermo Series 2, 2022
Let $G$ be a Carnot group. We study nonlocal diffusion equations in a domain $ $ of $G$ of the form $$ u_t^ (x,t)=\int_{G}\frac{1}{ ^2}K_ (x,y)(u^ (y,t)-u^ (x,t))\,dy, \qquad x\in $$ with $u^ =g(x,t)$ for $x\notin $. For appropriate rescaled kernel $K_ $ we prove that solutions $u^ $, when $ \rightarrow0$, uniformly approximate the ...
Isolda E. Cardoso, Raúl E. Vidal
openaire   +2 more sources

Intrinsic regular surfaces in Carnot groups

open access: yesBruno Pini Mathematical Analysis Seminar
A Carnot group $G$ is a simply connected, nilpotent Lie group with stratified Lie algebra. Intrinsic regular surfaces in Carnot groups play the same role as C1 surfaces in Euclidean spaces.
Daniela Di Donato
doaj   +1 more source

The Traveling Salesman Theorem in Carnot groups [PDF]

open access: yesCalculus of Variations and Partial Differential Equations, 2018
Let $\mathbb{G}$ be any Carnot group. We prove that, if a subset of $\mathbb{G}$ is contained in a rectifiable curve, then it satisfies Peter Jones' geometric lemma with some natural modifications. We thus prove one direction of the Traveling Salesman Theorem in $\mathbb{G}$.
Sean Li   +2 more
openaire   +3 more sources

Invertible Carnot Groups [PDF]

open access: yes, 2016
We characterize Carnot groups admitting a 1-quasiconformal metric inversion as the Lie groups of Heisenberg type whose Lie algebras satisfy the $J^2$-condition, thus characterizing a special case of inversion invariant bi-Lipschitz homogeneity.
Freeman, David M.
core  

On the codimension of the abnormal set in step two Carnot groups [PDF]

open access: yes, 2018
In this article we prove that the codimension of the abnormal set of the endpoint map for certain classes of Carnot groups of step 2 is at least three.
Ottazzi, Alessandro, Vittone, Davide
core   +2 more sources

Home - About - Disclaimer - Privacy