Results 201 to 210 of about 1,880,402 (311)
Identification of proteins influencing CRISPR-associated transposases for enhanced genome editing. [PDF]
Song LCT +13 more
europepmc +1 more source
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang +7 more
wiley +1 more source
Annealing strategy for enhancing the fracture toughness of MoSiBTiC alloys. [PDF]
Sekido N, Saito T, Yoshimi K.
europepmc +1 more source
Molecular Cross‐Linking of MXenes: Tunable Interfaces and Chemiresistive Sensing
In this study, Ti3C2Tx MXenes are initially functionalized using oleylamine ligands to form stable dispersions in an organic solvent. Subsequently ligand exchange with α,ω‐diaminoalkanes enables cross‐linking, along with precise tuning of interfaces. This structural control translates into tunable charge transport and responsive VOC sensing, showing ...
Yudhajit Bhattacharjee +12 more
wiley +1 more source
Clinical Recommendations for Implant Verification Jigs in Analogue and Digital Workflows. A Narrative Review. [PDF]
Wong AWH, Nedelcu R, Hamilton A.
europepmc +1 more source
Na‐ion batteries ‐ Impact of doping on the oxygen redox: The sloping potential of NaMg0.1Ni0.4Mn0.5O2 above 4.0 V is caused by a new redox center (arising from the ‘O bound to Mg’), having a higher potential but being more irreversible compared to the ‘O bound to Ni’.
Yongchun Li +12 more
wiley +1 more source
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou +8 more
wiley +1 more source
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu +14 more
wiley +1 more source
A compendium of temperature and salinity profiles and discrete nutrients from selected NOAA programs in Alaska. [PDF]
Mordy CW +10 more
europepmc +1 more source

