Results 81 to 90 of about 3,151 (106)
Sharp bounds on Castelnuovo-Mumford regularity [PDF]
The Castelnuovo-Mumford regularity of a subscheme \(X \subseteq \mathbb{P}^n_K\) is an important invariant of this embedding. If \(K\) is algebraically closed of characteristic zero, and \(X\) is nondegenerate, irreducible and \(k\)-Buchsbaum, it was shown by \textit{U. Nagel} and \textit{P. Schenzel} [Nagoya Math. J. 152, 153-174 (1998; Zbl 0945.13008)
openaire +2 more sources
Castelnuovo–Mumford regularity of canonical and deficiency modules
We give two kinds of bounds for the Castelnuovo-Mumford regularity of the canonical module and the deficiency modules of a ring, respectively in terms of the homological degree and the Castelnuovo-Mumford regularity of the original ring.
Hoa, Lê Tuân, Hyry, Eero
openaire +3 more sources
Castelnuovo-Mumford Regularity and Edge Ideals [PDF]
In this dissertation we study the homological algebra of the monomial ideals with a special emphasis on the topics of the Castenuovo-Mumford regularity and the powers of edge ideals of finite simple graphs. The main problem of this dissertation is to find optimal bounds for the regularity of powers of edge ideals.
openaire +1 more source
Castelnuovo-Mumford regularity and cohomological dimension
Let $R=\oplus_{i\in \N_0}R_n$ be a standard graded ring, $R_+ :=\oplus_{i\in \N}R_n$ be the irrelevant ideal of $R$ and $\fa_0$ be an ideal of $R_0$. In this paper, as a generalization of the concept of Castelnouvo-Mumford regularity $\reg(M)$ of a finitely generated graded $R$-module $M$, we define the regularity of $M$ with respect to $\fa_0+ R_ ...
openaire +2 more sources
Asymptotic Behaviour of the Castelnuovo-Mumford Regularity
S. Cutkosky, J. Herzog, Ngô Viêt Trung
semanticscholar +1 more source
Correction to: The v-Number and Castelnuovo-Mumford Regularity of Cover Ideals of Graphs
Kamalesh Saha
semanticscholar +1 more source
Higher resonance schemes and Koszul modules of simplicial complexes. [PDF]
Aprodu M +4 more
europepmc +1 more source
Castelnuovo-Mumford regularity of symbolic powers of two-dimensional square-free monomial ideals
L. T. Hoa, T. N. Trung
semanticscholar +1 more source
Bounds for the Castelnuovo-Mumford regularity
Bayer et Stillman ont montré que si R est un anneau de polynômes sur un corps k et I un idéal homogène de R, alors la régularité de I est égal au maximum des degrés des générateurs de son idéal initial générique pour l'ordre lexicographique inverse.
openaire +1 more source

