Results 241 to 250 of about 726,049 (330)

Highly Sensitive Electrochemical Biosensor Based on Hairy Particles with Controllable High Enzyme Loading and Activity

open access: yesAdvanced Functional Materials, EarlyView.
For the first time, a highly sensitive electrochemical biosensor based on SiO2‐based hairy particles with a grafted PDMAEMA polymer brush containing a quantifiable and large amount of immobilized Laccase is reported. The fabricated biosensor exhibits a sensitivity of 0.14 A·m⁻¹, a limit of detection (LOD) of 0.1 µm, and a detection range of 0.3–750 µm,
Pavel Milkin   +7 more
wiley   +1 more source

Photocatalytic Versus Stoichiometric Hydrogen Generation Using Mesoporous Silicon Catalysts: The Complex Role of Sacrificial Reagents

open access: yesAdvanced Functional Materials, EarlyView.
This study highlights the importance of accounting for stoichiometric hydrogen produced when utilizing Si photocatalysts. The stoichiometric contribution is sacrificial reagent dependent and decreases with increasing sterics around the catalyst surface.
Sarrah H. Putwa   +4 more
wiley   +1 more source

FeDSNP‐Pa Nanoassemblies: A Triple‐Action Therapeutic Strategy Targeting Oxidative Stress, Inflammation, and Pyroptosis for Retinal Ganglion Cell Protection in Glaucoma

open access: yesAdvanced Functional Materials, EarlyView.
FeDSNP‐Pa, a metallized nanoparticle loaded with sodium pyruvate (Pa), exerts triple therapeutic effects by scavenging reactive oxygen species (ROS), suppressing inflammatory responses, and inhibiting pyroptosis signaling pathways. This multifunctional neuroprotective strategy protecting retinal ganglion cells (RGCs) from elevated intraocular pressure ...
Yukun Wu   +5 more
wiley   +1 more source

Biomass Native Structure Into Functional Carbon‐Based Catalysts for Fenton‐Like Reactions

open access: yesAdvanced Functional Materials, EarlyView.
This study indicates that eight biomasses with 2D flaky and 1D acicular structures influence surface O types, morphology, defects, N doping, sp2 C, and Co nanoparticles loading in three series of carbon, N‐doped carbon, and cobalt/graphitic carbon. This work identifies how these structural factors impact catalytic pathways, enhancing selective electron
Wenjie Tian   +7 more
wiley   +1 more source

Exploiting the Functionality of Cerium Oxide‐Modified Carbon Nanohorns Catalysts Toward Enhanced CO2 Reduction Performance

open access: yesAdvanced Functional Materials, EarlyView.
A cerium oxide‐carbon nanohybrid catalyst is synthesized via two distinct routes and is integrated into H‐type cells and gas diffusion layers (GDLs) to enhance electrochemical performance. Structural variations significantly affect performance, with the solvothermal sample exhibiting higher current densities.
Alessia Pollice   +9 more
wiley   +1 more source

Catalysis: CO2 catalysis quest

open access: yesFocus on Catalysts, 2016
openaire   +1 more source

Bicontinuous Microarchitected Scaffolds Provide Topographic Cues That Govern Neuronal Behavior and Maturation

open access: yesAdvanced Functional Materials, EarlyView.
A scalable biomimetic platform transforms bioinert poly(ethylene glycol) diacrylate into neuroinstructive matrices via integrating solvent transfer‐induced phase separation, microfluidics, and 3D bioprinting. Bicontinuous, hyperbolically curved microporous networks embedded within a fibrous construct elicit rapid adhesion, robust proliferation, and ...
Prince D. Okoro   +8 more
wiley   +1 more source

Oligohistidine‐Functionalized Single‐Walled Carbon Nanotube‐Guided RNA Delivery to Improve Shoot Regeneration Efficiency in Plant Calli

open access: yesAdvanced Functional Materials, EarlyView.
The pH‐sensitive His6‐SWNTs, which is functionalized with oligohistidine, can deliver STTM396 molecules into callus cells. The STTM396–SWNT complex treatments enhance shoot regeneration efficiency by regulating the miR396‐GRF module in Arabidopsis and tomato calli.
Yeong Yeop Jeong   +7 more
wiley   +1 more source

Modulating Electrochemical CO2 Reduction Pathways via Interfacial Electric Field

open access: yesAdvanced Functional Materials, EarlyView.
Engineering interfacial electric fields in Cu/ITO electrodes enables precise control of CO2 reduction pathways. Charge transfer from Cu to ITO generates positively charged Cu species that steer selectivity from ethylene toward methane. This work demonstrates how interfacial electric‐field modulation can direct reaction intermediates and transform ...
Mahdi Salehi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy