Results 251 to 260 of about 1,626,670 (341)

Crossover Effects of Transition‐Metal Ions on Lithium‐Metal Anode in Localized High Concentration Electrolytes

open access: yesAdvanced Functional Materials, EarlyView.
This study highlights the impact of transition‐metal (TM) ions (Ni2⁺, Mn2⁺, Co2⁺) on the performance of lithium‐metal anode in localized high‐concentration electrolytes. Mn2⁺ and Co2⁺ destabilize SEI and CEI layers, causing capacity fade and overpotential, while Ni2⁺ shows minimal effects. These findings underscore the need for electrolyte optimization
Zezhou Guo   +2 more
wiley   +1 more source

Ultrafast Room‐Temperature Nanofabrication via Ozone‐Based Gas‐Phase Metal‐Assisted Chemical Etching for High‐Performance Silicon Photodetectors

open access: yesAdvanced Functional Materials, EarlyView.
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho   +11 more
wiley   +1 more source

Tunable Thermoshrinkable Hydrogels for 4D Fabrication of Cell‐Seeded Channels

open access: yesAdvanced Functional Materials, EarlyView.
A thermoresponsive polymer with methacrylate groups for photo‐cross‐linking, based on polyethylene glycol, N‐isopropylacrylamide, and 2‐hydroxyethyl acrylate is synthetized to yield hydrogels that shrink upon temperature increase. The new polymer enables the fabrication of cell‐laden perfusable channels with diameters below 200 µm by combining ...
Greta Di Marco   +12 more
wiley   +1 more source

Tuning D‐Band Center of Vanadium in Constructing Lattice‐Matched Coherent Heterostructure for Enhanced Sodium Storage

open access: yesAdvanced Functional Materials, EarlyView.
The coherent heterostructure and the strong stress field at the heterointerface upshift the d‐band center of vanadium toward the Fermi level, which effectively lowers the Na+ diffusion barrier, facilitates charge transfer and accelerates reaction kinetics.
Xuexia Song   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy