Results 181 to 190 of about 824,520 (345)

F‐Box and Leucine‐Rich Repeat Protein 4 (FBXL4) Maintains Sarcomere Integrity and Cardiac Function by Enhancing K48‐Linked Ubiquitinated Degradation of Profilin‐1 (PFN1)

open access: yesAdvanced Science, EarlyView.
Schematic diagram depicting the proposed signaling mechanisms underlying the effects of FBXL4 in the setting of cardiac hypertrophy. Under hypertrophic stimulation, cardiomyocytes‐specific overexpression FBXL4 maintains sarcomere integrity and cardiac function by enhancing K48‐linked ubiquitinated degradation of PFN1 at the K70 site.
Xingda Li   +11 more
wiley   +1 more source

Optimizing the securement of epidural catheters: an in vitro trial

open access: gold, 2018
Mohammed Hakim   +6 more
openalex   +2 more sources

Alternative Pathway for Methyl Supply through the Coupling of SHMT1 and PEMT to Maintain Astrocytic Homeostasis in Parkinson's Disease

open access: yesAdvanced Science, EarlyView.
In Parkinson's disease, SHMT1 downregulation disrupts its interaction with PEMT in astrocytes, reducing SAM levels. This leads to H3K4me1 hypomethylation and decreased Slc1a2/Glul expression, ultimately exacerbating neuroexcitotoxicity and dopaminergic neuron loss.
Yue‐Han Chen   +17 more
wiley   +1 more source

New Peritoneal Catheters: New Catheter Problems? [PDF]

open access: yesPeritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 2014
Blanco García, Raquel   +4 more
openaire   +3 more sources

Arbitrary 3D Organic Mixed Ionic‐Electronic Conductor Architectures via Self‐Fusion of PEDOT:PSS Microfibers

open access: yesAdvanced Science, EarlyView.
A general fabricating strategy for arbitrary 3D organic mixed ionic‐electronic conductor architectures is reported using PEDOT:PSS microfiber building blocks. A water‐assisted self‐fusion process is successfully developed in which adhesion can be modulated as reversible (PSS‐rich) or irreversible (PEDOT‐rich) self‐fusion depending on the post‐treatment
Youngseok Kim   +8 more
wiley   +1 more source

Curved Bistable Origami‐Inspired Flexible Transcatheter Mitral Valve Clamping

open access: yesAdvanced Science, EarlyView.
A lightweight bistable curved origami dilator combines reversible deformation and high stability, offering a promising solution for minimally invasive mitral valve repair. Abstract Curved origami exhibits remarkable potential for minimally invasive medical applications owing to its unique geometric programmability and mechanical tunability. Building on
Siyu Gao   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy