Results 71 to 80 of about 195,117 (294)

High field phase transition of cathode material Li2MnSiO4 for lithium-ion battery

open access: yesMaterials Research Express, 2020
The magnetic properties of the candidate lithium-ion battery cathode materials Li _2 MnSiO _4 have been studied experimentally using static and pulsed high magnetic fields.
Feng Yang   +10 more
doaj   +1 more source

2D Phosphorene‐Decorated Ni‐Rich Layered Cathodes for High‐Power and High‐Energy Li‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A conformal coating of 2D phosphorene nanosheets is decorated on Li[Ni0.8Co0.1Mn0.1]O2 cathodes to enhance fast charge–discharge performance and structural stability under high mass loading and low carbon content. As a result, it exhibits improved power capability, cycle stability, and suppressed structural degradation, offering a promising strategy ...
Jihoe Lee   +15 more
wiley   +1 more source

Unveiling Phonon Contributions to Thermal Conductivity and the Applicability of the Wiedemann—Franz Law in Ruthenium and Tungsten Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
Thermal transport in Ru and W thin films is studied using steady‐state thermoreflectance, ultrafast pump–probe spectroscopy, infrared‐visible spectroscopy, and computations. Significant Lorenz number deviations reveal strong phonon contributions, reaching 45% in Ru and 62% in W.
Md. Rafiqul Islam   +14 more
wiley   +1 more source

Boosting the Energy Density of “Anode‐Free” Lithium Metal Batteries via Electrospun Polymeric Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
While host structures are known to enhance the reversibility and safety of lithium metal deposition, their additional volume and weight often decrease the battery's energy density and specific energy. By combining a lightweight and porous scaffold of electrospun polymer with a thinner separator, this article demonstrates a simultaneous improvement of ...
Lennart Wichmann   +6 more
wiley   +1 more source

Electroactive Metal–Organic Frameworks for Electrocatalysis

open access: yesAdvanced Functional Materials, EarlyView.
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska   +7 more
wiley   +1 more source

Tunable Coordination Number in Non‐Metal‐Introduced Copper Catalysts Enables High‐Performance Electrochemical CO2 Reduction to C2 Products

open access: yesAdvanced Functional Materials, EarlyView.
Copper catalysts introduced with different non‐metallic elements regulating the coordination number of Cu are prepared by magnetron sputtering. Reducing the Cu coordination number enhances C─C coupling and boosts C2+ product selectivity, by lowering the energy barrier for the *CO → *CHO conversion step. The optimized Si‐doped Cu catalyst achieves a C2+
Xiaoye Du   +8 more
wiley   +1 more source

Encapsulating Zinc Powder in MXene/Silk Scaffolds with Zincophilic‐Hydrophobic Polymer for Flexible Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work develops flexible zinc‐ion batteries (FZIBs) using a zincophilic/hydrophobic polymer (thermoplastic polycarbonate‐based polyurethane, TPCU) to protect Zn powder anodes and MXene/Silk (MXS) as flexible current collectors. The designed TPCU‐ZnP@MXS structure enables uniform Zn deposition, yielding dendrite‐free anodes with stable cycling ...
Zixuan Yang   +8 more
wiley   +1 more source

Materiais usados na constituição dos principais componentes de células a combustível de óxido sólido Materials used in the manufacture of the main components of solid oxide fuel cells

open access: yesCerâmica, 2009
As células a combustível de óxido sólido (SOFC) são dispositivos capazes de gerar energia elétrica com alta eficiência e baixa emissão de poluentes. As altas temperaturas de operação dessas células (600 a 1000 °C) são benéficas no sentido de possibilitar
A. C. Nascimento, N. D. S. Mohallem
doaj   +1 more source

Ion‐Selective Microporous Membranes via One‐Step Copolymerization Enable High‐Performance Redox Flow Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A scalable one‐step copolymerization strategy is developed to produce low‐cost microporous ion exchange membranes that boost both the efficiency and lifespan of flow batteries. When combined with organic electrolytes in aqueous systems, these membranes enable safe and cheap flow battery energy storage, supporting the widespread integration of renewable
Jiaye Liu   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy