Results 231 to 240 of about 4,311,487 (382)

Hydroxyl and nitrate co-upgrading to oxime via anode-cathode cascade electrolyzer. [PDF]

open access: yesNat Commun
Peng O   +8 more
europepmc   +1 more source

Ternary Synergy in Layered Double Hydroxides for Efficient and Stable Nitrate Reduction

open access: yesAdvanced Functional Materials, EarlyView.
Ternary CuZnFe LDH enables efficient electrocatalytic nitrate‐to‐ammonia conversion via controlled in situ reconstruction: zinc leaching creates porous active sites, copper reduced to metallic copper, while iron oxide keeps stable. Synergistic Cu‐Fe redox coupling drives tandem catalysis (nitrate→nitrite→NH3), achieving 95% Faraday efficiency and ...
Jiaqian Kang   +9 more
wiley   +1 more source

Tailored Polymer‐Based SEI via iCVD for Stable Zinc Metal Anodes in Aqueous Batteries through Modulation of Hydrophilicity and Elasticity to Inhibit Hydrogen Evolution Reactions

open access: yesAdvanced Functional Materials, EarlyView.
A stretchable and superhydrophobic pF1V1 polymer layer is conformally coated on Zn metal via iCVD, forming a water‐repelling interphase that inhibits the hydrogen evolution reaction. This tailored interface maintains excellent electrolyte compatibility while suppressing dendrite growth, thereby enhancing the long‐term electrochemical stability of Zn ...
Jaeyeon Lee   +12 more
wiley   +1 more source

Fine‐Tunning BaCo0.4Fe0.4Zr0.1Y0.1O3−δ‐Based Air Electrodes for Reversible Protonic Ceramic Cells via Co‐Engineering A‐site Deficiency and Nickel Content

open access: yesAdvanced Functional Materials, EarlyView.
A synergistic strategy combining A‐site deficiency and B‐site nickel doping yielded a BCFZYN‐095‐01 nanocomposite air electrode for reversible protonic ceramic cells with superior ORR/OER activities. B‐site deficiency in the perovskite lattice enhances proton conduction, and nickel doping within the bulk facilitates oxygen transport.
Mingzhuang Liang   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy