Results 171 to 180 of about 15,034,981 (403)
Nuclear prothymosin α inhibits epithelial‐mesenchymal transition (EMT) in lung cancer by increasing Smad7 acetylation and competing with Smad2 for binding to SNAI1, TWIST1, and ZEB1 promoters. In early‐stage cancer, ProT suppresses TGF‐β‐induced EMT, while its loss in the nucleus in late‐stage cancer leads to enhanced EMT and poor prognosis.
Liyun Chen+12 more
wiley +1 more source
Expression and Purification of the Human Voltage-Gated Proton Channel (hHv1)
The voltage-gated proton channel (Hv1) is a membrane protein that dissipates acute cell proton accumulations. To understand the molecular mechanisms explaining Hv1 function, methods for purifying the protein are needed. Previously, methods were developed
Emerson Carmona+2 more
doaj +1 more source
MEMBRANE EQUILIBRIA AND THE ELECTRIC CHARGE OF RED BLOOD CELLS [PDF]
Calvin B. Coulter
openalex +1 more source
Does Porphyromonas gingivalis truly inhibit the oral carcinogenesis?
Chen‐xi Li, Zhong‐cheng Gong
wiley +1 more source
Determination of ADP/ATP translocase isoform ratios in malignancy and cellular senescence
The individual functions of three isoforms exchanging ADP and ATP (ADP/ATP translocases; ANTs) on the mitochondrial membrane remain unclear. We developed a method for quantitatively differentiating highly similar human ANT1, ANT2, and ANT3 using parallel reaction monitoring. This method allowed us to assess changes in translocase levels during cellular
Zuzana Liblova+18 more
wiley +1 more source
Breast cancer metastasis is associated with myeloid cell dysregulation and the lung‐specific accumulation of tumor‐supportive Gr1+ cells. Gr1+ cells support metastasis, in part, through a CHI3L1‐mediated mechanism, which can be targeted and inhibited with cargo‐free, polymeric nanoparticles.
Jeffrey A. Ma+9 more
wiley +1 more source
Loss of proton‐sensing GPR4 reduces tumor progression in mouse models of colon cancer
G protein‐coupled receptor 4 (GPR4) is a pH‐sensing receptor activated by acidic pH. GPR4 expression is increased in patients with inflammatory bowel disease who are at high risk of developing colorectal cancer. In mouse models, loss of GPR4 attenuated tumor progression. This correlated with increased IL2 and natural killer cell activity.
Leonie Perren+16 more
wiley +1 more source
Cell Membrane Coating Nanotechnology
Ronnie H. Fang+3 more
semanticscholar +1 more source