Results 151 to 160 of about 4,825,915 (329)
Biomass Native Structure Into Functional Carbon‐Based Catalysts for Fenton‐Like Reactions
This study indicates that eight biomasses with 2D flaky and 1D acicular structures influence surface O types, morphology, defects, N doping, sp2 C, and Co nanoparticles loading in three series of carbon, N‐doped carbon, and cobalt/graphitic carbon. This work identifies how these structural factors impact catalytic pathways, enhancing selective electron
Wenjie Tian +7 more
wiley +1 more source
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou +4 more
wiley +1 more source
The adsorption potential of biochar derived from municipal solid waste (MSW) and coconut husk (CH) for methylene blue (MB) removal was investigated in this study.
Divine Angela G. Sumalinog +7 more
doaj +1 more source
A cerium oxide‐carbon nanohybrid catalyst is synthesized via two distinct routes and is integrated into H‐type cells and gas diffusion layers (GDLs) to enhance electrochemical performance. Structural variations significantly affect performance, with the solvothermal sample exhibiting higher current densities.
Alessia Pollice +9 more
wiley +1 more source
Substrate Stress Relaxation Regulates Cell‐Mediated Assembly of Extracellular Matrix
Silicone‐based viscoelastic substrates with tunable stress relaxation reveal how matrix mechanics regulates cellular mechanosensing and cell‐mediated matrix remodelling in the stiff regime. High stress relaxation promotes assembly of fibronectin fibril‐like structures, increased nuclear localization of YAP and formation of β1 integrin‐enriched ...
Jonah L. Voigt +2 more
wiley +1 more source
Modulating Electrochemical CO2 Reduction Pathways via Interfacial Electric Field
Engineering interfacial electric fields in Cu/ITO electrodes enables precise control of CO2 reduction pathways. Charge transfer from Cu to ITO generates positively charged Cu species that steer selectivity from ethylene toward methane. This work demonstrates how interfacial electric‐field modulation can direct reaction intermediates and transform ...
Mahdi Salehi +7 more
wiley +1 more source
Insect-powered electrochemical capacitors: The potential of cricket biomass
Insect biomass, rich in chitin and chitosan, is a sustainable and abundant resource with substantial promise for advancing green energy storage solutions.
Julien Lemieux +6 more
doaj +1 more source
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán +13 more
wiley +1 more source
Balanites aegyptiaca (L.) Delile, a medicinal tree, produces an edible fruit widely recognized in traditional medicine for its antidiabetic and liver-enhancing properties.
Asmaa Abdelsalam +4 more
doaj +1 more source
This work presents self‐propelled CRISPR/Cas9‐functionalized Au–MRs for rapid, amplification‐free, “on‐the‐fly” DNA detection. By harnessing motion‐assisted signal recovery, the platform achieved the limit of detection in low fM DNA concentrations, enabling detection across a wide dynamic range within only 5 min, which is significantly faster than any ...
Jyoti +3 more
wiley +1 more source

