Results 121 to 130 of about 589,709 (328)
Steiner distance in chemical graph theory
Steiner distance dG(S) is a natural generalization of the concept of distance in a graph. For a connected graph G of order at least 2 and S ⊆ V (G), dG(S) is equal to the minimum size among all connected subgraphs whose vertex sets are equal to the set S.
Mao, Yaping, Furtula, Boris
openaire +1 more source
A tri‐culture of iPSC‐derived neurons, astrocytes, and microglia treated with ferroptosis inducers as an Induced ferroptosis model was characterized by scRNA‐seq, cell survival, and cytokine release assays. This analysis revealed diverse microglial transcriptomic changes, indicating that the system captures key aspects of the complex cellular ...
Hongmei Lisa Li +6 more
wiley +1 more source
Mouse pre‐implantation development involves a transition from totipotency to pluripotency. Integrating transcriptomics, epigenetic profiling, low‐input proteomics and functional assays, we show that eight‐cell embryos retain residual totipotency features, whereas cytoskeletal remodeling regulated by the ubiquitin‐proteasome system drives progression ...
Wanqiong Li +8 more
wiley +1 more source
Laser Metal Deposited Ti4822 Hollow Pipe: Experimental and Computational Modelling Study
Laser metal deposition (LMD) of a crack‐free built Ti4822 alloys is challenging. This article reports outstanding characteristics of a hollow pipe that is built with LMD technology when a predicted, nontransformation substrate temperature of 800 °C is used.
Sadiq A. Raji +5 more
wiley +1 more source
This study presents micropleated filters manufactured by needleless electrospinning. Nanofibers are deposited onto uniaxially pre‐stretched substrates that contract upon release, forming densely packed micropleats. This architecture increases effective surface area without enlarging the filter size, achieving quality factors comparable to those of ...
Aleksandr Fadeev +6 more
wiley +1 more source
An idea of designing novel sensors is proposed by creating appropriate Schottky barriers and vacancies between isomorphous Core‐CuOii/ Shell‐CuOi secondary microspheres and enhancing catalytic and spill‐over effects, and electronegativity via spontaneous biphasic separation, self‐assembly, and trace‐Ni‐doping.
Bala Ismail Adamu +8 more
wiley +1 more source
This article provides an overview of recent advancements in bulk processing of rare‐earth‐free hard magnetic materials. It also addresses related simulation approaches at different scales. The research on rare‐earth‐free magnetic materials has increased significantly in recent years, driven by supply chain issues, environmental and social concerns, and
Daniel Scheiber, Andrea Bachmaier
wiley +1 more source
A wood‐based magnetic and conductive material called Magwood (MW), capable of blocking almost 99.99% of electromagnetic waves (in the X‐band frequency range), is synthesized using a simple, solvent‐free process. MW is lightweight, resists water, and is flame‐retardant, making it a promising alternative for shielding electronics. The rapid proliferation
Akash Madhav Gondaliya +3 more
wiley +1 more source
PBTTT‐OR‐R, a C14‐alkoxy/alkyl‐PBTTT polymer derivative, is of substantial interest for optoelectronics due to its specific fullerene intercalation behavior and enhanced charge‐transfer absorption. Comparing this polymer with (S) and without (O) homocoupling defects reveals that PBTTT‐OR‐R(O) forms stable co‐crystals with PC61BM, while PBTTT‐OR‐R(S ...
Zhen Liu +14 more
wiley +1 more source
A lack of standard approaches for testing and reporting the performance of metal halide perovskites and organic semiconductor radiation detectors has resulted in inconsistent interpretation of performance parameters, impeding progress in the field. This Perspective recommends key metrics and experimental details, which are suggested for reporting in ...
Jessie A. Posar +8 more
wiley +1 more source

