Results 241 to 250 of about 973,163 (345)
Breaking the Capacity Limit for WO3 Anode‐Based Li‐Ion Batteries Using Photo‐Assisted Charging
This image illustrates a photo‐assisted rechargeable lithium‐ion battery. (a) shows the battery structure, where light enhances electron‐hole generation in the anode, boosting ion flow. (b) compares discharging performance, revealing over 60% higher capacity under light compared to dark conditions, showcasing the benefit of light‐assisted energy ...
Rabia Khatoon+7 more
wiley +1 more source
Stimuli-Directed Dynamic Reconfiguration in Self-Organized Helical Superstructures Enabled by Chemical Kinetics of Chiral Molecular Motors. [PDF]
Sun J+8 more
europepmc +1 more source
A copper‐induced atom ordering strategy is developed for the reconstruction of raw commercial Pt catalyst into ordered PtFeCu intermetallic compounds for hydrogen fuel cells. Abstract Carbon‐supported platinum intermetallic compound nanoparticles are seen as the next‐generation cathodic catalysts for hydrogen fuel cells due to their high activity and ...
Yan Nie+9 more
wiley +1 more source
Chemical kinetics study through observation of individual reaction events with atomic-resolution electron microscopy. [PDF]
Nakamura E, Harano K.
europepmc +1 more source
XCHEM-1D: A Heat Transfer/Chemical Kinetics Computer Program for multilayered reactive materials
Robert Gross+2 more
openalex +1 more source
The co‐doping strategy can effectively address the challenges associated with LRMOs cathode materials, providing a promising pathway for the development of high energy density and resilient cathode materials in the next‐generation lithium‐ion batteries. Abstract Lithium‐rich manganese‐based oxides (LRMOs) are promising cathode materials for lithium‐ion
Junxia Meng+11 more
wiley +1 more source
The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies. [PDF]
Heppner DE+2 more
europepmc +1 more source
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho+11 more
wiley +1 more source