Results 191 to 200 of about 883,463 (344)

Large‐Scale Interlaboratory Study Along the Entire Process Chain of Laser Powder Bed Fusion: Bridging Variability, Standards, and Optimization across Metals and Polymers

open access: yesAdvanced Engineering Materials, EarlyView.
What happens when 32 labs join forces to study nanoparticle‐modified powders? A data‐driven journey through laser powder bed fusion—now openly accessible for the entire additive manufacturing community—is studied. Laser powder bed fusion is a cornerstone technology for additive manufacturing (AM) of metals and polymers, yet challenges in achieving ...
Ihsan Murat Kuşoğlu   +73 more
wiley   +1 more source

“Transitivity”: A Code for Computing Kinetic and Related Parameters in Chemical Transformations and Transport Phenomena [PDF]

open access: gold, 2019
Hugo G. Machado   +5 more
openalex   +1 more source

Laser Additive Manufacturing of Oxide‐Dispersion‐Strengthened Steels: A Simulation‐Based Comparison Between Powder Bed Fusion and Direct Energy Deposition

open access: yesAdvanced Engineering Materials, EarlyView.
Controlling the size and distribution of dispersoids is essential for optimizing the performance of oxide‐dispersion‐strengthened steels. This study focuses on nanoparticle dispersion and agglomeration during laser additive manufacturing of Fe20Cr alloy reinforced with ZrO 2 nanoparticles. Utilizing multiphysics phase‐field simulations and nanoparticle
Somnath Bharech   +6 more
wiley   +1 more source

Effect of Thermomechanical Processing on the Impact Deformation of Additively Manufactured 316L Stainless Steel

open access: yesAdvanced Engineering Materials, EarlyView.
Previous studies on additive manufacturing primarily focus on the mechanical properties of as‐printed components. In the present work, researchers explore the potential of employing novel thermomechanical postprocessing techniques to improve the microstructure after printing.
Radim Kocich   +3 more
wiley   +1 more source

Scalable Fabrication of Height‐Variable Microstructures with a Revised Wetting Model

open access: yesAdvanced Engineering Materials, EarlyView.
Height‐variable microstructures are fabricated using a scalable CO2 laser machining approach, enabling precise control of wettability through structural gradients. Classical wetting models fail to capture height‐induced effects, necessitating a revised theoretical framework.
Prabuddha De Saram   +2 more
wiley   +1 more source

Influence of Testing Temperature on the Mechanical Performance of Brazed Conventionally and Additively Manufactured 316L Stainless Steel Joints

open access: yesAdvanced Engineering Materials, EarlyView.
This study reports for the first time the mechanical properties of brazed joints featuring Additively manufactured parts, such parts will likely need to be joined or combined with other components, and brazing offers a way of doing this for complex shapes without distortion. A new shear test methodology developed for such joints is also described.
Frances Livera   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy