Results 241 to 250 of about 5,487,194 (373)

Direct Consolidation of Copper–Graphene Composite by Rotary Swaging

open access: yesAdvanced Engineering Materials, EarlyView.
The applicability of the rotary swaging method for preparation of electroconductive copper–graphene composite by direct consolidation of powders is proven. The consolidated material features advantageous microstructure featuring fine grains and twins, with homogeneous distribution of graphene, primarily along the twin boundaries, which contribute to ...
Radim Kocich   +2 more
wiley   +1 more source

Design and Evaluation of 3D‐Printed Polylactic Acid Composites Reinforced with Biodegradable Bamboo Powder and Jute Powder

open access: yesAdvanced Engineering Materials, EarlyView.
The study investigates 3D‐printed polylactic acid (PLA) composites with biodegradable bamboo and jute powder fillers. Mechanical, thermal, structural properties, and rheological behavior are discussed to evaluate composite performance. Morphological characterization indicates uniform dispersion and adhesion of the fillers in the PLA matrix with the ...
Vimukthi Dananjaya   +4 more
wiley   +1 more source

A Study on Thermal Expansion and Thermomechanical Behavior of Composite Metal Foams

open access: yesAdvanced Engineering Materials, EarlyView.
The coefficient of thermal expansion of steel–steel composite metal foam (S‐S CMF) is shown to be lower than that of bulk stainless steel while its performance under compression demonstrate excellent mechanical stability and strength at all temperatures with gradualsoftening from 400 to 600 °C.
Zubin Chacko   +2 more
wiley   +1 more source

Microstructure, Mechanical Properties, and Antibacterial Performance of Novel Fe‐Mn‐Zn Nanocrystalline Alloys Produced by Mechanical Alloying

open access: yesAdvanced Engineering Materials, EarlyView.
This article presents the development of Fe‐Mn‐Zn nanocrystalline alloys (0–9 wt% Zn) by mechanical alloying and subsequently hot pressing. Their microstructure, density, hardness, wear resistance, corrosion behavior, and antibacterial properties are systematically examined.
Ilker Emin Dag   +3 more
wiley   +1 more source

Enhanced Mechanical Properties of Injectable Chitosan–Guar Gum Hydrogel Reinforced with Bacterial Cellulose Nanofibers for Tissue Engineering Applications

open access: yesAdvanced Engineering Materials, EarlyView.
This study presents the development and characterization of injectable nanocomposite hydrogels based on N‐succinyl chitosan, oxidized guar gum, and bacterial cellulose nanofibers. Emphasizing enhanced mechanical properties and biocompatibility, the hydrogels exhibit fast gelation, improved structural integrity, and reduced swelling. Their potential for
Raimundo Nonato Fernandes Moreira Filho   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy