Results 101 to 110 of about 2,730 (156)

On the description of a certain class of Chernikov 3-groups, which are extensions of the complete Abelian 3-group by means of a cyclic group of order 27

open access: yesScientific Bulletin of Uzhhorod University. Series of Mathematics and Informatics
В данiй роботi описуються з точнiстю до iзоморфiзму, деякi чернiковськi 3-групи, що є розширеннями повних абелевих 3-груп з умовою мiнiмальностi. Зокрема описуються всi такi розширення прямої суми 26-ти екземплярiв адитивної, квазiциклiчної 3-групи ℂ3∞, за допомогою циклiчної групи H порядку 27, i якi визначаються зображенням Γ, де Γ пробiгає наступну ...
openaire   +1 more source

Mitochondrial Damage and Mitochondria-Targeted Antioxidant Protection in LPS-Induced Acute Kidney Injury. [PDF]

open access: yesAntioxidants (Basel), 2019
Plotnikov EY   +8 more
europepmc   +1 more source

Effect of structure and composition of cationic liposomes on the delivery of siRNA <i>in vitro</i> and <i>in vivo</i>. [PDF]

open access: yesFront Pharmacol
Gladkikh DV   +5 more
europepmc   +1 more source

Design, Screening and Development of Asymmetric siRNAs Targeting the MYC Oncogene in Triple-Negative Breast Cancer. [PDF]

open access: yesBiomol Ther (Seoul)
Mekonnen N   +7 more
europepmc   +1 more source

Chernikov 2-Groups with Kleinian Top and Totally Reducible Bottom

Ukrainian Mathematical Journal, 2021
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Drozd, Yu. A., Plakosh, A. I.
openaire   +2 more sources

Groups with Chernikov factor-group by hypercentral

Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2014
In this interesting paper the authors extend some classical theorems involving the terms and the factor groups of the central series of a group. They show that a periodic hypercentral-by-Chernikov group is Chernikov-by-hypercentral and obtain explicit bounds that describe numerical invariants of the second structure of the group as a function of the ...
Kurdachenko, Leonid A., Otal, Javier
openaire   +1 more source

Characterization of infinite Chernikov groups

Ukrainian Mathematical Journal, 1990
See the review in Zbl 0705.20038.
Sesekin, N. F., Shumyatskij, P. V.
openaire   +2 more sources

Groups With Chernikov Classes of Conjugate Subgroups

Journal of Group Theory, 2005
A famous theorem by B.~H.~Neumann states that a group \(G\) is central-by-finite if and only if each subgroup of \(G\) has finitely many conjugates, i.e. if and only if the index \(|G:N_G(H)|\) is finite for every subgroup \(H\) of \(G\). A group \(G\) is said to have `Chernikov conjugacy classes' of subgroups if \(G/N_G(H)_G\) is a Chernikov group for
Kurdachenko, Leonid A., Otal, Javier
openaire   +1 more source

Home - About - Disclaimer - Privacy