Results 151 to 160 of about 590,102 (248)

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Selective and Precise Editing of Digital Polymers Through Parallel or Series Toehold‐Mediated Strand Displacement

open access: yesAdvanced Functional Materials, EarlyView.
A sequence‐encoded supramolecular construct containing two accessible toeholds is developed herein for enabling multiple editing operations. By introducing specific input strands, it is possible to selectively erase or rewrite digital content through parallel or series toehold‐mediated strand displacement (PTMSD or STMSD).
Jakub Ossowski   +3 more
wiley   +1 more source

Toward the 3rd Generation of Smart Farming: Materials, Devices, and Systems for E‐Plant Technologies

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the latest developments in e‐plant technologies, which are revolutionizing smart farming by enabling real‐time monitoring of plant and environmental conditions. It covers the design, applications, and systems of e‐plant devices, detailing how they integrate data analytics to optimize agricultural practices, enhance crop yields, and
Daegun Kim   +5 more
wiley   +1 more source

Highly Selective Toward HER or CO2RR by Regulating Cu Single and Dual Atoms on g‐C3N4

open access: yesAdvanced Functional Materials, EarlyView.
This systematic study provides insights into the design of electrocatalysts for hydrogen evolution reaction (HER) and carbon dioxide reduction (CO2RR). It serves as a useful guide for tuning catalyst architecture toward efficient multifunctional performance by varying synthetic parameters, demonstrating the impact of copper (Cu) species ranging from ...
Wan‐Ting Chen   +9 more
wiley   +1 more source

Bioinspired Design of a Wet‐Adhesive Cornea Glue Based on Recombinant Human Protein Networks

open access: yesAdvanced Functional Materials, EarlyView.
Natures protein‐based high performance materials e.g. elastin, silk and muscle proteins have been mimicked by a new protein‐hybrid material based on redesigned human partial sequences only, showing high wet‐adhesiveness and elasticity for biomedical applications.
Anna Resch   +17 more
wiley   +1 more source

Home - About - Disclaimer - Privacy