Results 281 to 290 of about 1,319,691 (347)
In macrophage‐myofibroblast transition, upregulated NNMT depletes S‐Adenosylmethionine (SAM) and nicotinamide adenine dinucleotide(NAD+), thereby triggering epigenetic reprogramming via Histone H3 Lysine 27 acetylation (H3K27ac) accumulation at the promoter region of master transcription factor Prrx1.
Xiwen Dong +11 more
wiley +1 more source
Assessment of Bicarbonate Deficiency in Feline Acute and Chronic Kidney Disease. [PDF]
Perondi F +4 more
europepmc +1 more source
CLINICAL UTILITY OF KIDNEY FAILURE RISK EQUATION IN DIABETES AND CHRONIC KIDNEY DISEASE
Ying Guat Ooi +14 more
openalex +2 more sources
Biocatalytic Nanoregulators Restore Joint Redox‐Immune Homeostasis in Rheumatoid Arthritis
Mesenchymal stem cell‐derived extracellular vesicles (EVs) coat ruthenium‐loaded metal‐organic frameworks (Ru@ZrMOF), creating a targeted therapeutic (Ru@ZrMOF/EVs). This platform scavenges ROS, generates oxygen, and polarizes macrophages from M1 to M2, alleviating inflammation, inhibiting pannus, promoting cartilage repair, and downregulating HIF‐1α ...
Xingheng Wang +7 more
wiley +1 more source
Untargeted salivary metabolomics for pediatric chronic kidney disease diagnosis. [PDF]
Unceta N +9 more
europepmc +1 more source
This study successfully establishes adamantinomatous craniopharyngioma (ACP) patient‐derived organoids (PDOs) that preserve the histopathological and genetic features of the original tumors. Through drug sensitivity assays and subsequent mechanistic analyses, the study demonstrates that Ceritinib exerts its inhibitory effects on ACP PDO growth by ...
Huarong Zhang +15 more
wiley +1 more source
A retrospective cohort study on the bidirectional association between depression and chronic kidney disease. [PDF]
Jeun KJ +3 more
europepmc +1 more source
Annexin A13 Protects Against Acute Kidney Injury by Inactivating TGF‐β/Smad3 Signaling
ANXA13 is negatively regulated by Smad3 and exerts its protective role in AKI by inactivating TGF‐β/Smad3 signaling and Smad3‐p21 cell cycle arrest pathway through binding to TβRI, inhibiting the interaction between TβRI and TβRII, thereby suppressing TβRI phosporylation.
Jiaxiao Li +12 more
wiley +1 more source

