Results 261 to 270 of about 22,338,503 (347)
Metal Nanoclusters for Cancer Imaging and Treatment
This review aims to provide a comprehensive summary and discussion of the core–shell design capabilities of metal nanoclusters (NCs) at the atomic level for cancer imaging and treatment. It offers essential insights into the design principles of metal NCs while also encouraging the exploration of other nanomaterials and their potential theranostic ...
Haiguang Zhu+5 more
wiley +1 more source
Zr‐Fe MOF@Ribociclib@Herceptin (ZFRH) efficiently targets/kills Human Epidermal Growth Factor Receptor 2/Estrogen Receptor‐positive (HER2/ER+) breast cancer cells. It combats tumors by: 1) Elevating ROS, altering redox balance; 2) Inhibiting transcription; 3) Inducing pyroptosis.
Hongkun Miao+8 more
wiley +1 more source
AI is transforming the research paradigm of battery materials and reshaping the entire landscape of battery technology. This comprehensive review summarizes the cutting‐edge applications of AI in the advancement of battery materials, underscores the critical challenges faced in harnessing the full potential of AI, and proposes strategic guidance for ...
Qingyun Hu+5 more
wiley +1 more source
Post‐surgical tumor therapy struggles with recurrence and inefficient healing. Anti‐tumor DNA aptamer functionalized gelatin hydrogels, Apt‐GelMA, simultaneously address both issues by suppressing tumor regrowth via targeted tumor cell inhibition and enhancing wound healing through improved cell adhesion and migration. Their biocompatibility, stability,
Tianyue Li+11 more
wiley +1 more source
Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth+2 more
wiley +1 more source
Toward the 3rd Generation of Smart Farming: Materials, Devices, and Systems for E‐Plant Technologies
This review explores the latest developments in e‐plant technologies, which are revolutionizing smart farming by enabling real‐time monitoring of plant and environmental conditions. It covers the design, applications, and systems of e‐plant devices, detailing how they integrate data analytics to optimize agricultural practices, enhance crop yields, and
Daegun Kim+5 more
wiley +1 more source
The implementation of electrocatalysts toward H2O2 electrosynthesis on an industrial scale necessitates the reconsideration of design criteria. The proposed “active sites saturation” theory shows that materials with mixed active sites normally exhibit low selectivity under practical conditions.
Zhiping Deng+3 more
wiley +1 more source
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz+3 more
wiley +1 more source
Engineering Highly Cellularized Living Materials via Mechanical Agitation
A mechanical agitation strategy is developed to engineer highly cellularized living materials, achieving cell densities of up to 1 billion cells per milliliter. By precisely tuning properties such as stiffness and toughness in blood clots, the approach is validated in both in vitro and in vivo studies.
Aram Bahmani+9 more
wiley +1 more source
This review highlights emerging bioengineering strategies for treating neointimal hyperplasia in the peripheral vasculature, focusing on approaches that promote re‐endothelialization, modulate smooth muscle cell phenotype, reduce inflammation, mitigate oxidative stress, and optimize biomechanical compliance.
Nikita Wilson John+5 more
wiley +1 more source