Results 1 to 10 of about 2,507,409 (326)
On local class field theory* [PDF]
Verf. skizziert eine einheitliche Darstellung der lokalen Klassenkörpertheorie über Zahl- und Funktionenkörpern \(k\). Als Ausgangspunkt dient das Verschwinden der Kohomologiegruppen \(H^2(G(K/\hat k)), K^*)\), wobei \(\hat k\) die unverzweigte Erweiterung von \(k\) ist.
O. F. G. Schilling
openaire +4 more sources
Asymptotic symmetries and subleading soft photon theorem in effective field theories
In [1, 2] it was shown that the subleading soft photon theorem in tree level amplitudes in massless QED is equivalent to a new class of symmetries of the theory parameterized by a vector field on the celestial sphere.
Alok Laddha, Prahar Mitra
doaj +3 more sources
Computational class field theory [PDF]
Class field theory furnishes an intrinsic description of the abelian extensions of a number field that is in many cases not of an immediate algorithmic nature. We outline the algorithms available for the explicit computation of such extensions.
Cohen, Henri, Stevenhagen, Peter
openaire +3 more sources
Class field theory summarized [PDF]
Dennis Garbanti
openaire +3 more sources
Class fields generated by coordinates of elliptic curves
Let KK be an imaginary quadratic field different from Q(−1){\mathbb{Q}}\left(\sqrt{-1}) and Q(−3){\mathbb{Q}}\left(\sqrt{-3}). For a nontrivial integral ideal m{\mathfrak{m}} of KK, let Km{K}_{{\mathfrak{m}}} be the ray class field modulo m{\mathfrak{m}}.
Jung Ho Yun, Koo Ja Kyung, Shin Dong Hwa
doaj +1 more source
Ramanujan’s function k(τ)=r(τ)r2(2τ) and its modularity
We study the modularity of Ramanujan’s function k(τ)=r(τ)r2(2τ)k(\tau )=r(\tau ){r}^{2}(2\tau ), where r(τ)r(\tau ) is the Rogers-Ramanujan continued fraction.
Lee Yoonjin, Park Yoon Kyung
doaj +1 more source
Effective field theories as Lagrange spaces
We present a formulation of scalar effective field theories in terms of the geometry of Lagrange spaces. The horizontal geometry of the Lagrange space generalizes the Riemannian geometry on the scalar field manifold, inducing a broad class of affine ...
Nathaniel Craig +3 more
doaj +1 more source
Tame class field theory for arithmetic schemes [PDF]
We extend the unramified class field theory for arithmetic schemes of K. Kato and S. Saito to the tame case. Let $X$ be a regular proper arithmetic scheme and let $D$ be a divisor on $X$ whose vertical irreducible components are normal schemes. Theorem:
Alexander Schmidt +12 more
core +3 more sources
Kaluza-Klein fermion mass matrices from exceptional field theory and N $$ \mathcal{N} $$ = 1 spectra
Using Exceptional Field Theory, we determine the infinite-dimensional mass matrices for the gravitino and spin-1/2 Kaluza-Klein perturbations above a class of anti-de Sitter solutions of M-theory and massive type IIA string theory with topologically ...
Mattia Cesàro, Oscar Varela
doaj +1 more source

