Results 31 to 40 of about 132 (132)
In this study, the interplay of dipolar dynamics and ionic charge transport in MOF compounds is investigated. Synthesizing the novel structure CFA‐25 with integrated freely rotating dipolar groups, local and macroscopic effects, including interactions with Cs cations are explored.
Ralph Freund+6 more
wiley +1 more source
Wearable Haptic Feedback Interfaces for Augmenting Human Touch
The wearable haptic feedback interfaces enhance user experience in gaming, social media, biomedical instrumentation, and robotics by generating tactile sensations. This review discusses and categorizes current haptic feedback interfaces into force, thermal, and electrotactile stimulation‐based haptic feedback interfaces, elucidating their current ...
Shubham Patel+3 more
wiley +1 more source
A lack of standard approaches for testing and reporting the performance of metal halide perovskites and organic semiconductor radiation detectors has resulted in inconsistent interpretation of performance parameters, impeding progress in the field. This Perspective recommends key metrics and experimental details, which are suggested for reporting in ...
Jessie A. Posar+8 more
wiley +1 more source
Active Learning‐Driven Discovery of Sub‐2 Nm High‐Entropy Nanocatalysts for Alkaline Water Splitting
High‐entropy nanoparticles (HENPs) hold great promise for electrocatalysis, yet optimizing their compositions remains challenging. This study employs active learning and Bayesian Optimization to accelerate the discovery of octonary HENPs for hydrogen and oxygen evolution reactions.
Sakthivel Perumal+5 more
wiley +1 more source
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous
Mingfeng Xu+5 more
wiley +1 more source
High‐Entropy Magnetism of Murunskite
The study of murunskite (K2FeCu3S4) reveals that its magnetic and orbital order emerges in a simple I4/mmm crystal structure with complete disorder in the transition metal positions. Mixed‐valence Fe ions randomly occupy 1/4 of the tetrahedral sites, with the remaining 3/4 being filled by non‐magnetic Cu+ ions.
Davor Tolj+18 more
wiley +1 more source
This review provides an in‐depth understanding of all theoretical reaction mechanisms to date concerning zinc–iodine batteries. It revisits the inherent issues and solutions of zinc–iodine batteries from the perspective of industrial application. By integrating existing examples of energy storage applications, it identifies the challenges faced on the ...
Haokun Wen+10 more
wiley +1 more source
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du+11 more
wiley +1 more source
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian+6 more
wiley +1 more source
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho+11 more
wiley +1 more source