Results 1 to 10 of about 79,087 (306)

Algorithms for classical orthogonal polynomials [PDF]

open access: green, 1996
In this article explicit formulas for the recurrence equation p_{n+1}(x) = (A_n x + B_n) p_n(x) - C_n p_{n-1}(x) and the derivative rules sigma(x) p'_n(x) = alpha_n p_{n+1}(x) + beta_n p_n(x) + gamma_n p_{n-1}(x) and sigma(x) p'_n(x) = (alpha_n-
Koepf, Wolfram, Schmersau, Dieter
core   +4 more sources

Orthogonal Polynomials With a Semi-Classical Weight and Their Recurrence Coefficients [PDF]

open access: goldIEEE Access, 2020
Focusing on the weight function $\omega (x,t)=x^{\alpha }e^{-\frac {1}{3}x^{3}+tx}, x\in [0,\infty),\,\,\,\,\alpha >-1,\,\,\,\,t> 0$ , we state its asymptotic orthogonal polynomials.
Dan Wang, Mengkun Zhu, Yang Chen
doaj   +2 more sources

Generalized Quasi-Orthogonal Functional Networks Applied in Parameter Sensitivity Analysis of Complex Dynamical Systems

open access: yesElektronika ir Elektrotechnika, 2022
This paper presents one possible application of generalized quasi-orthogonal functional networks in the sensitivity analysis of complex dynamical systems.
Sasa S. Nikolic   +6 more
doaj   +1 more source

On Certain Properties and Applications of the Perturbed Meixner–Pollaczek Weight

open access: yesMathematics, 2021
This paper deals with monic orthogonal polynomials orthogonal with a perturbation of classical Meixner–Pollaczek measure. These polynomials, called Perturbed Meixner–Pollaczek polynomials, are described by their weight function emanating from an ...
Abey S. Kelil   +2 more
doaj   +1 more source

BESSEL POLYNOMIALS AND SOME CONNECTION FORMULAS IN TERMS OF THE ACTION OF LINEAR DIFFERENTIAL OPERATORS

open access: yesUral Mathematical Journal, 2022
In this paper, we introduce the concept of the \(\mathbb{B}_{\alpha}\)-classical orthogonal polynomials, where \(\mathbb{B}_{\alpha}\) is the raising operator \(\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}\), with nonzero ...
Baghdadi Aloui, Jihad Souissi
doaj   +1 more source

The Stenger conjectures and the A-stability of collocation Runge-Kutta methods

open access: yesJournal of Inequalities and Applications, 2023
Stenger conjectures are claims about the location of the eigenvalues of matrices whose elements are certain integrals involving basic Lagrange interpolating polynomials supported on the zeros of orthogonal polynomials. In this paper, we show the validity
Rachid Ait-Haddou, Hoda Alselami
doaj   +1 more source

Krylov complexity and orthogonal polynomials

open access: yesNuclear Physics B, 2022
Krylov complexity measures operator growth with respect to a basis, which is adapted to the Heisenberg time evolution. The construction of that basis relies on the Lanczos algorithm, also known as the recursion method.
Wolfgang Mück, Yi Yang
doaj   +1 more source

RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS

open access: yesПроблемы анализа, 2020
We consider recurrence relations for the polynomials orthonormal with respect to the Sobolev-type inner product and generated by classical orthogonal polynomials, namely: Jacobi polynomials, Legendre polynomials, Chebyshev polynomials of the first and ...
M. S. Sultanakhmedov
doaj   +1 more source

Fourier coefficients for Laguerre–Sobolev type orthogonal polynomials [PDF]

open access: yesArab Journal of Mathematical Sciences, 2023
Purpose – In this paper, the authors take the first step in the study of constructive methods by using Sobolev polynomials. Design/methodology/approach – To do that, the authors use the connection formulas between Sobolev polynomials and classical ...
Alejandro Molano
doaj   +1 more source

Nearest Neighbor Recurrence Relations for Meixner–Angelesco Multiple Orthogonal Polynomials of the Second Kind

open access: yesMathematics, 2023
This paper studies a new family of Angelesco multiple orthogonal polynomials with shared orthogonality conditions with respect to a system of weight functions, which are complex analogs of Pascal distributions on a legged star-like set.
Jorge Arvesú   +1 more
doaj   +1 more source

Home - About - Disclaimer - Privacy