Results 11 to 20 of about 56,667 (302)

On moments of classical orthogonal polynomials

open access: yesJournal of Mathematical Analysis and Applications, 2015
Abstract In this work, using the inversion coefficients and some connection coefficients between some polynomial sets, we give explicit representations of the moments of all the orthogonal polynomials belonging to the Askey–Wilson scheme. Generating functions for some of these moments are also provided.
P. Njionou Sadjang   +3 more
openaire   +3 more sources

Zero distribution of sequences of classical orthogonal polynomials [PDF]

open access: goldAbstract and Applied Analysis, 2003
We obtain the zero distribution of sequences of classical orthogonal polynomials associated with Jacobi, Laguerre, and Hermite weights. We show that the limit measure is the extremal measure associated with the corresponding weight.
Plamen Simeonov
doaj   +2 more sources

Classical orthogonal polynomials: dependence of parameters

open access: bronzeJournal of Computational and Applied Mathematics, 2000
AbstractMost of the classical orthogonal polynomials (continuous, discrete and their q-analogues) can be considered as functions of several parameters ci. A systematic study of the variation, infinitesimal and finite, of these polynomials Pn(x,ci) with respect to the parameters ci is proposed.
A. Ronveaux   +3 more
openalex   +4 more sources

On ( p , q ) $(p,q)$ -classical orthogonal polynomials and their characterization theorems

open access: yesAdvances in Difference Equations, 2017
In this paper, we introduce a general ( p , q ) $(p, q)$ -Sturm-Liouville difference equation whose solutions are ( p , q ) $(p, q)$ -analogues of classical orthogonal polynomials leading to Jacobi, Laguerre, and Hermite polynomials as ( p , q ) → ( 1 ...
M Masjed-Jamei   +3 more
doaj   +2 more sources

A New First Finite Class of Classical Orthogonal Polynomials Operational Matrices: An Application for Solving Fractional Differential Equations

open access: yesContemporary Mathematics, 2023
In this paper, new operational matrices (OMs) of ordinary and fractional derivatives (FDs) of a first finite class of classical orthogonal polynomials (FFCOP) are introduced.
H. M. Ahmed
semanticscholar   +1 more source

Generalized Quasi-Orthogonal Functional Networks Applied in Parameter Sensitivity Analysis of Complex Dynamical Systems

open access: yesElektronika ir Elektrotechnika, 2022
This paper presents one possible application of generalized quasi-orthogonal functional networks in the sensitivity analysis of complex dynamical systems.
Sasa S. Nikolic   +6 more
doaj   +1 more source

Breakthrough Solution for Antimicrobial Resistance Detection: Surface‐Enhanced Raman Spectroscopy‐based on Artificial Intelligence

open access: yesAdvanced Materials Interfaces, EarlyView., 2023
This review discusses the use of Surface‐Enhanced Raman Spectroscopy (SERS) combined with Artificial Intelligence (AI) for detecting antimicrobial resistance (AMR). Various SERS studies used with AI techniques, including machine learning and deep learning, are analyzed for their advantages and limitations.
Zakarya Al‐Shaebi   +4 more
wiley   +1 more source

On Certain Properties and Applications of the Perturbed Meixner–Pollaczek Weight

open access: yesMathematics, 2021
This paper deals with monic orthogonal polynomials orthogonal with a perturbation of classical Meixner–Pollaczek measure. These polynomials, called Perturbed Meixner–Pollaczek polynomials, are described by their weight function emanating from an ...
Abey S. Kelil   +2 more
doaj   +1 more source

BESSEL POLYNOMIALS AND SOME CONNECTION FORMULAS IN TERMS OF THE ACTION OF LINEAR DIFFERENTIAL OPERATORS

open access: yesUral Mathematical Journal, 2022
In this paper, we introduce the concept of the \(\mathbb{B}_{\alpha}\)-classical orthogonal polynomials, where \(\mathbb{B}_{\alpha}\) is the raising operator \(\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}\), with nonzero ...
Baghdadi Aloui, Jihad Souissi
doaj   +1 more source

Home - About - Disclaimer - Privacy