Results 41 to 50 of about 58,842 (311)

Discrete semi-classical orthogonal polynomials of class one on quadratic lattices

open access: yesJournal of difference equations and applications (Print), 2018
We study orthogonal polynomials on quadratic lattices with respect to Stieltjes functions, S, that satisfy a difference equation where A is a polynomial of degree less or equal than 3 and C is a polynomial of degree greater or equal than 1 and less or ...
G. Filipuk, M. N. Rebocho
semanticscholar   +1 more source

Characterizations of classical orthogonal polynomials on quadratic lattices [PDF]

open access: yes, 2016
This paper is devoted to characterizations of classical orthogonal polynomials on quadratic lattices by using a matrix approach. In this form we recover the Hahn, Geronimus, Tricomi and Bochner type characterizations of classical orthogonal polynomials ...
Marlyse Njinkeu Sandjon   +3 more
semanticscholar   +1 more source

New Formulas and Connections Involving Euler Polynomials

open access: yesAxioms, 2022
The major goal of the current article is to create new formulas and connections between several well-known polynomials and the Euler polynomials. These formulas are developed using some of these polynomials’ well-known fundamental characteristics as well
Waleed Mohamed Abd-Elhameed   +1 more
doaj   +1 more source

Exploring the versatile properties and applications of multidimensional degenerate Hermite polynomials

open access: yesAIMS Mathematics, 2023
In this study, we develop various features in special polynomials using the principle of monomiality, operational formalism, and other qualities. By utilizing the monomiality principle, new outcomes can be achieved while staying consistent with past ...
Mohra Zayed, Shahid Wani
doaj   +1 more source

On Some Relations between the Hermite Polynomials and Some Well-Known Classical Polynomials and the Hypergeometric Function.

open access: yesمجلة العلوم البحتة والتطبيقية, 2020
The connection between different classes of special functions is a very important aspect in establishing new properties of the related classical functions that is they can inherit the properties of each other. Here we show how the Hermite polynomials are
Haniyah Saed Ben Hamdin
doaj   +1 more source

Hard‐Magnetic Soft Millirobots in Underactuated Systems

open access: yesAdvanced Robotics Research, EarlyView.
This review provides a comprehensive overview of hard‐magnetic soft millirobots in underactuated systems. It examines key advances in structural design, physics‐informed modeling, and control strategies, while highlighting the interplay among these domains.
Qiong Wang   +4 more
wiley   +1 more source

A NEW CHARACTERIZATION OF 𝑞-CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

open access: yesПроблемы анализа
In this work, we introduce the notion of $\cal{U}_{(q, \mu)}$-classical orthogonal polynomials, where $\cal{U}_{(q, \mu)}$ is the degree raising shift operator defined by $\cal{U}_{(q, \mu)}$ $:= x(xH_q + q^{-1}I_{\cal{P}}) + \mu H_q$, where $\mu$ is a
S. Jbeli
doaj   +1 more source

Parameter Derivatives of the Jacobi Polynomials with Three Variables on the Simplex

open access: yesMATEC Web of Conferences, 2016
In this paper, an attempt has been made to derive parameter derivatives of Jacobi polynomials with three variables on the simplex. They are obtained via parameter derivatives of the classical Jacobi polynomials Pn(α,β)(x) with respect to their parameters.
Aktaş Rabia
doaj   +1 more source

Expressing Sums of Finite Products of Chebyshev Polynomials of the Second Kind and of Fibonacci Polynomials by Several Orthogonal Polynomials

open access: yesMathematics, 2018
This paper is concerned with representing sums of the finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials in terms of several classical orthogonal polynomials.
Taekyun Kim   +3 more
doaj   +1 more source

Home - About - Disclaimer - Privacy