Results 221 to 230 of about 1,020,281 (333)
Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint +6 more
wiley +1 more source
Preparation and High-Sensitivity Thermochromic Performance of MXene-Enhanced Cholesteric Liquid Crystal Microcapsule Textiles. [PDF]
Sun X, Yang Y, Zhang X, Yin M, Sheng M.
europepmc +1 more source
The NiCuFe‐layered double hydroxides nanosheets are synthesized for facilitating nitrate‐to‐ammonia with a high ammonia yield of 1.64 mmol h−1 cm−2, Faradaic efficiency of 94.8% and stability for 15 cycles. The assembled Zn‐nitrate battery delivers a remarkable power density of 12.4 mW cm−2.
Bin Liu +9 more
wiley +1 more source
Influence of relative strength on the optimal load of the hang power clean and hang high pull in collegiate athletes. [PDF]
Xie Y, Pan X, Peng F, Sun Q.
europepmc +1 more source
Reauthorization of the Clean Water Act by the 104th Congress [PDF]
Kundell, James E
core +1 more source
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu +14 more
wiley +1 more source
Effect of long-term use of treated wastewater and clean water mixtures on soil heavy metal accumulation: An assessment using pollution indices. [PDF]
Er H.
europepmc +1 more source
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source

