Results 161 to 170 of about 7,941 (270)

Gain efficiency with streamlined and automated data processing: Examples from high-throughput monoclonal antibody production. [PDF]

open access: yesPLoS One
Kotowicz M   +16 more
europepmc   +1 more source

LRRC8A Regulates Outer Hair Cell Volume and Electromotility and is Required for Hearing

open access: yesAdvanced Science, EarlyView.
This study identifies LRRC8A‐dependent volume‐regulated anion channels (VRACs) as essential for cochlear outer hair cells' electromotility and auditory signal amplification. LRRC8A deficiency disrupts cell volume control, impairs auditory sensitivity, and causes deafness, while targeted LRRC8A re‐expression restores auditory function.
Shengnan Wang   +15 more
wiley   +1 more source

Acod1 Promotes PAD4 Ubiquitination via UBR5 Alkylation to Modulate NETosis and Exert Protective Effects in Sepsis

open access: yesAdvanced Science, EarlyView.
In this study, Acod1 knockout in CLP mice significantly increases peripheral blood NET levels, exacerbating inflammation, organ damage, and reducing survival. Further research shows that UBR5 interacts with PAD4, a key NET formation protein. Acod1/itaconate (ITA) enhances the enzymatic activity of UBR5 by alkylating the Cys2768 site, promoting the K48 ...
Huifan Liu   +10 more
wiley   +1 more source

Enhancer adoption by an LTR retrotransposon generates viral-like particles, causing developmental limb phenotypes. [PDF]

open access: yesNat Genet
Glaser J   +16 more
europepmc   +1 more source

Alnustone Ameliorates Metabolic Dysfunction‐Associated Steatotic Liver Disease by Facilitating Mitochondrial Fatty Acid β‐Oxidation via Targeting Calmodulin

open access: yesAdvanced Science, EarlyView.
This study identifies alnustone, a natural compound from Alpinia katsumadai, as a potent therapeutic agent for MASLD and MASH. Alnustone enhances mitochondrial fatty acid β‐oxidation by directly targeting calmodulin, improving liver steatosis, fibrosis, and insulin resistance in vivo.
Shourui Hu   +13 more
wiley   +1 more source

Exome Sequencing Reveals the Genetic Architecture of Non‐syndromic Orofacial Clefts and Identifies BOC as a Novel Causal Gene

open access: yesAdvanced Science, EarlyView.
Nonsyndromic orofacial clefts (NSOFCs) are the most common craniofacial defects. Exome sequencing of 214 sporadic cases sheds new light on its genetic architecture and identifies many candidate pathogenic variants. Furthermore, functional studies establish BOC as a novel causal gene and reveal an unusual two‐locus model of inheritance via the epistatic
Qing He   +16 more
wiley   +1 more source

Through the lens of bioenergy crops: advances, bottlenecks, and promises of plant engineering. [PDF]

open access: yesPlant J
Indibi A   +6 more
europepmc   +1 more source

IncRNA‐ZFAS1, an Emerging Gate‐Keeper in DNA Damage‐Dependent Transcriptional Regulation

open access: yesAdvanced Science, EarlyView.
LncZFAS1 plays a crucial role during DNA damage response in mammalian cells. Loss of lncZFAS1 results in deficient DNA lesion removal and reduced cell viability. Mechanistically, lncZFAS1 modulates RNAPII phosphorylation and transcription and thereby promotes both GG‐NER and TC‐NER upon UV damage.
Jiena Liu   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy