Results 81 to 90 of about 289,175 (312)
Viscoelasticity‐driven instabilities are harnessed to create tunable, periodic textures in 3D‐printed liquid crystalline polymers. This study illustrates how processing parameters control these spontaneous meso‐scale patterns. These unique structural architectures unlock new possibilities for functional devices, ranging from photonic components to ...
Miaomiao Zou +17 more
wiley +1 more source
Broadband, Flexible, Skin‐Compatible Carbon Dots/Graphene Photodetectors for Wearable Applications
Broadband, flexible photodetectors integrating nitrogen‐rich carbon dots with single‐layer graphene on plastic substrates are demonstrated. A biocompatible chitosan–glycerol electrolyte enables efficient low‐voltage gating and on‐skin operation. The devices exhibit ultraviolet‐to‐near‐infrared response, mechanical robustness under bending, and verified
Nouha Loudhaief +20 more
wiley +1 more source
Membrane Wrapping for High Capacity and Rapidly Switchable Adhesives
A membrane‐wrapping mechanism enables high‐capacity, rapidly switchable adhesion by coupling suction, friction, and adhesion. Broadband performance is achieved in dry and underwater conditions, allowing fast, reversible manipulation of objects of diverse sizes and shapes, from delicate eggs and berries to flat, complex, or heavy objects. These outcomes
Yeunhee Kim +2 more
wiley +1 more source
Permanent magnets derive their extraordinary strength from deep, universal electronic‐structure principles that control magnetization, anisotropy, and intrinsic performance. This work uncovers those governing rules, examines modern modeling and AI‐driven discovery methods, identifies critical bottlenecks, and reveals electronic fingerprints shared ...
Prashant Singh
wiley +1 more source
The use of continuous drop‐based force and energy probing methods is introduced to evaluate in situ chemical degradation of super liquid‐repellent surfaces by caustic liquids. By tracking the velocity of rolling drops and energy dissipation of impacting drops, degradation dynamics are resolved under high spatio‐temporal precision. Using this technique,
Parham Koochak +2 more
wiley +1 more source
Nanoscale‐grooved indium gallium oxide (IGO) semiconductors, patterned via thermal nanoimprint lithography (NIL) using CD/DVD templates, are integrated into electrolyte‐gated transistor biosensors to overcome Debye length limitations. Precisely engineered concave–convex nanostructures modulate local electrostatic potentials, extend the effective Debye ...
Jong Yu Song +5 more
wiley +1 more source
We consider a new subclass $\widetilde{\mathcal{K}}_u$ of close-to-convex functions in the unit disk $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$. For this class, we obtain sharp estimates of the Fekete-Szegö problem, growth and distortion theorem, radius of convexity and estimate of the pre-Schwarzian norm.
openaire +3 more sources
Subclasses of close-to-convex functions
We introduce some subclasses of close-to-convex functions and obtain sharp results for coefficients, distortion theorems and argument theorems from which results of several authors follows as special cases.
Harjinder Singh, B.S. Mehrok
openaire +2 more sources
This study presents a dynamic interaction between liquid resins and photopolymerized structures enabled by an in situ light‐writing setup. By controlling a three‐phase interface through localized photopolymerization, which provides physical confinement for the remaining uncured resin regions, the approach establishes a programmable pathway that ...
Kibeom Kim +3 more
wiley +1 more source
Novel Functional Materials via 3D Printing by Vat Photopolymerization
This Perspective systematically analyzes strategies for incorporating functionalities into 3D‐printed materials via Vat Photopolymerization (VP). It explores the spectrum of achievable functionalities in recently reported novel materials—such as conductive, energy‐storing, biodegradable, stimuli‐responsive, self‐healing, shape‐memory, biomaterials, and
Sergey S. Nechausov +3 more
wiley +1 more source

