Cloud Point Behavior of Poly(trifluoroethyl methacrylate) in Supercritical CO2–Toluene Mixtures [PDF]
Supercritical CO2 (scCO2) is a versatile solvent for polymer processing; however, many partially fluorinated polymers exhibit limited solubility in neat scCO2. Organic cosolvents such as toluene can enhance polymer–solvent interactions, thereby improving
James R. Zelaya, Gary C. Tepper
doaj +2 more sources
Cloud point extraction coupled with back extraction: a green methodology in analytical chemistry. [PDF]
Recently, cloud point extraction (CPE) coupled with back extraction (BE) has been suggested as a promising alternative to liquid-liquid extraction. In CPE, non-ionic surfactants in aqueous solutions form micelles and the solution becomes turbid when ...
Kori S.
europepmc +2 more sources
Masked Autoencoders for Point Cloud Self-supervised Learning [PDF]
As a promising scheme of self-supervised learning, masked autoencoding has significantly advanced natural language processing and computer vision. Inspired by this, we propose a neat scheme of masked autoencoders for point cloud self-supervised learning,
Yatian Pang+5 more
semanticscholar +1 more source
Geometric Transformer for Fast and Robust Point Cloud Registration [PDF]
We study the problem of extracting accurate correspondences for point cloud registration. Recent keypoint-free methods bypass the detection of repeatable keypoints which is difficult in low-overlap scenarios, showing great potential in registration. They
Zheng Qin+5 more
semanticscholar +1 more source
Novel, energy efficient and green cloud point extraction: technology and applications in food processing. [PDF]
Arya SS+4 more
europepmc +2 more sources
Stratified Transformer for 3D Point Cloud Segmentation [PDF]
3D point cloud segmentation has made tremendous progress in recent years. Most current methods focus on aggregating local features, but fail to directly model long-range dependencies.
Xin Lai+7 more
semanticscholar +1 more source
CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding [PDF]
Manual annotation of large-scale point cloud dataset for varying tasks such as 3D object classification, segmentation and detection is often laborious owing to the irregular structure of point clouds.
Mohamed Afham+5 more
semanticscholar +1 more source
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training [PDF]
Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-training for language and 2D image transformers. However, it still remains an open question on how to exploit masked autoencoding for learning 3D representations of irregular ...
Renrui Zhang+7 more
semanticscholar +1 more source
Point-Bind & Point-LLM: Aligning Point Cloud with Multi-modality for 3D Understanding, Generation, and Instruction Following [PDF]
We introduce Point-Bind, a 3D multi-modality model aligning point clouds with 2D image, language, audio, and video. Guided by ImageBind, we construct a joint embedding space between 3D and multi-modalities, enabling many promising applications, e.g., any-
Ziyu Guo+10 more
semanticscholar +1 more source
REGTR: End-to-end Point Cloud Correspondences with Transformers [PDF]
Despite recent success in incorporating learning into point cloud registration, many works focus on learning feature descriptors and continue to rely on nearest-neighbor feature matching and outlier filtering through RANSAC to obtain the final set of ...
Zi Jian Yew, Gim Hee Lee
semanticscholar +1 more source