Image generator for tabular data based on non-Euclidean metrics for CNN-based classification. [PDF]
Lin YR, Wu HM.
europepmc +1 more source
Artificial Intelligence for Bone: Theory, Methods, and Applications
Advances in artificial intelligence (AI) offer the potential to improve bone research. The current review explores the contributions of AI to pathological study, biomarker discovery, drug design, and clinical diagnosis and prognosis of bone diseases. We envision that AI‐driven methodologies will enable identifying novel targets for drugs discovery. The
Dongfeng Yuan +3 more
wiley +1 more source
Early Tuberculosis Detection via Privacy-Preserving, Adaptive-Weighted Deep Models. [PDF]
Gasmi K +9 more
europepmc +1 more source
Deep Learning‐Assisted Coherent Raman Scattering Microscopy
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu +4 more
wiley +1 more source
Unassailable citrus disease classification via multi-stage deep ensemble learning with vision transformers. [PDF]
Sireesha NV, Rekha G, Almenweer RA.
europepmc +1 more source
Deep Learning‐Assisted Design of Mechanical Metamaterials
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong +5 more
wiley +1 more source
A hybrid CNN-ViT framework with cross-attention fusion and data augmentation for robust brain tumor classification. [PDF]
Jayaraman G +5 more
europepmc +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
Flexible tactile sensors have considerable potential for broad application in healthcare monitoring, human–machine interfaces, and bioinspired robotics. This review explores recent progress in device design, performance optimization, and intelligent applications. It highlights how AI algorithms enhance environmental adaptability and perception accuracy
Siyuan Wang +3 more
wiley +1 more source
Deep Learning-Based Breast Tumor Classification Using Shear-Wave Sonoelastography Image Features and Clinical Variables. [PDF]
Shiran MB +6 more
europepmc +1 more source

