Results 151 to 160 of about 183,620 (300)
Interleaved block codes for the photon channel [PDF]
It is shown that interleavel binary block codes combined with pulse position modulation give the best practical coded systems yet devised for optical communication with photon detection.
Mceliece, R. J.
core +1 more source
The study presents biodegradable and recyclable mixed‐matrix membranes (MMMs), hydrogels, and cryogels using luminescent nanoscale metal‐organic frameworks (nMOFs) and biopolymers. These bio‐nMOF‐MMMs combine europium‐based nMOFs as probes for the status of the materials with the biopolymers agar and gelatine and present alternatives to conventional ...
Moritz Maxeiner +4 more
wiley +1 more source
This study investigates H4TBAPy‐based metal–organic frameworks (MOFs) ‐ NU‐1000, NU‐901, SrTBAPy, and BaTBAPy ‐ for multiphoton absorption (MPA) performance. It observes topology‐dependent variations in the 2PA cross‐section, with BaTBAPy exhibiting the highest activity.
Simon N. Deger +10 more
wiley +1 more source
The SERS spectra of reporter molecules adsorbed on chiral gold nanorods depends on the handedness of circularly polarized light (CPL‐SERS). The bisignate plasmonic CD spectra of chiral nanorods provides wavelength‐dependent CPL‐SERS. Selective discrimination of chiral nanorod handedness and different Raman reporters allow highly sensitive codification ...
Andrés Serrano‐Freijeiro +9 more
wiley +1 more source
Demonstration of an All‐Optical AND Gate Mediated by Photochromic Molecules
A logic AND gate that runs on photons is demonstrated. It relies on two spatially separated photochromic molecules that work in tandem. Abstract The realization of a photonic logic AND gate, i.e. a logic AND gate that runs on photons rather than electrons, and where all steps are controlled by light, is demonstrated. In a proof‐of‐principle experiment,
Heyou Zhang +7 more
wiley +1 more source
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou +4 more
wiley +1 more source
Modulating Electrochemical CO2 Reduction Pathways via Interfacial Electric Field
Engineering interfacial electric fields in Cu/ITO electrodes enables precise control of CO2 reduction pathways. Charge transfer from Cu to ITO generates positively charged Cu species that steer selectivity from ethylene toward methane. This work demonstrates how interfacial electric‐field modulation can direct reaction intermediates and transform ...
Mahdi Salehi +7 more
wiley +1 more source
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán +13 more
wiley +1 more source
Bloodstream infections (BSI) are one of the leading causes of mortality and morbidity in both civilian and military populations. This paper summarizes recent progress in novel treatment strategies to manage BSI arising from both bacterial and fungal pathogens using molecules, particles, and materials to elicit host‐directed immunity.
Thomas Thomou +11 more
wiley +1 more source

