Results 61 to 70 of about 133,631 (232)
Property (T) for groups acting on affine buildings
Abstract We prove that a group acting geometrically on a thick affine building has property (T). A more general criterion for property (T) is given for groups acting on partite complexes.
Izhar Oppenheim
wiley +1 more source
Cohomology and Deformations of Relative Rota–Baxter Operators on Lie-Yamaguti Algebras
In this paper, we establish the cohomology of relative Rota–Baxter operators on Lie-Yamaguti algebras via the Yamaguti cohomology. Then, we use this type of cohomology to characterize deformations of relative Rota–Baxter operators on Lie-Yamaguti ...
Jia Zhao, Yu Qiao
doaj +1 more source
Motivic p$p$‐adic tame cohomology
Abstract We construct a comparison functor between (A1$\mathbf {A}^1$‐local) tame motives and (□¯${\overline{\square }}$‐local) log‐étale motives over a field k$k$ of positive characteristic. This generalizes Binda–Park–Østvær's comparison for the Nisnevich topology.
Alberto Merici
wiley +1 more source
Cohomology Theory of Nonassociative Algebras with Metagroup Relations
Nonassociative algebras with metagroup relations and their modules are studied. Their cohomology theory is scrutinized. Extensions and cleftings of these algebras are studied. Broad families of such algebras and their acyclic complexes are described. For
Sergey V. Ludkowski
doaj +1 more source
States obtained by projecting boundary states, associated with D-branes, to fixed mass-level and momentum generically define non-trivial cohomology classes.
Joseph Henry+2 more
core +2 more sources
Equivariant cohomology and cohomological field theories [PDF]
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +3 more sources
Holomorphic field theories and higher algebra
Abstract Aimed at complex geometers and representation theorists, this survey explores higher dimensional analogs of the rich interplay between Riemann surfaces, Virasoro and Kac‐Moody Lie algebras, and conformal blocks. We introduce a panoply of examples from physics — field theories that are holomorphic in nature, such as holomorphic Chern‐Simons ...
Owen Gwilliam, Brian R. Williams
wiley +1 more source
Compactifications of strata of differentials
Abstract In this informal expository note, we quickly introduce and survey compactifications of strata of holomorphic 1‐forms on Riemann surfaces, that is, spaces of translation surfaces. In the last decade, several of these have been constructed, studied, and successfully applied to problems.
Benjamin Dozier
wiley +1 more source
Bounded cohomology of groups acting on trees with almost prescribed local actions
Abstract We prove the vanishing of bounded cohomology of the groups acting on trees with almost prescribed local actions G(F,F′)$G(F, F^{\prime })$, where F
Giuseppe Bargagnati, Elena Bogliolo
wiley +1 more source
Schubert calculus and singularity theory
Schubert calculus has been in the intersection of several fast developing areas of mathematics for a long time. Originally invented as the description of the cohomology of homogeneous spaces it has to be redesigned when applied to other generalized ...
Akyildiz+35 more
core +1 more source