Results 71 to 80 of about 133,631 (232)
Abstract We prove that (under appropriate orientation assumptions), the action of a Hamiltonian homeomorphism ϕ$\phi$ on the cohomology of a relatively exact Lagrangian fixed by ϕ$\phi$ is the identity. This extends results of Hu–Lalonde–Leclercq [Geom. Topol. 15 (2011), no. 3, 1617–1650] and the author [Selecta Math. (N.S.) 30 (2024), no. 2, Paper No.
Noah Porcelli
wiley +1 more source
On Cohomological Triviality [PDF]
PROOF. As usual we proceed by induction on the order n= I GI. The theorem is trivial for n= 1. Suppose n> 1 and assume the truth of the theorem for all groups of order
openaire +1 more source
Arithmetic sparsity in mixed Hodge settings
Abstract Let X$X$ be a smooth irreducible quasi‐projective algebraic variety over a number field K$K$. Suppose X$X$ is equipped with a p$p$‐adic étale local system compatible with an admissible graded‐polarized variation of mixed Hodge structures on the complex analytification of XC$X_{\operatorname{\mathbb {C}}}$.
Kenneth Chung Tak Chiu
wiley +1 more source
The triviality of dihedral cohomology for operator algebras
This article delves into algebraic topology, specifically (co)homology theory, which is essential in various mathematical fields. It explores different types of (co)homology groups such as Hochschild, cyclic, reflexive, and dihedral, focusing on dihedral
Samar A.A. Quota+3 more
doaj +1 more source
Remarks on some infinitesimal symmetries of Khovanov–Rozansky homologies in finite characteristic
Abstract We give a new proof of a theorem due to Shumakovitch and Wang on base point independence of Khovanov–Rozansky homology in characteristic p$p$. Some further symmetries of gl(p)$\mathfrak {gl}(p)$‐homology in characteristic p$p$ are also discussed.
You Qi+3 more
wiley +1 more source
The cohomological supercharge [PDF]
12 pages, latex, no figures.
openaire +4 more sources
Spaces with Noetherian cohomology [PDF]
AbstractIs the cohomology of the classifying space of a p-compact group, with Noetherian twisted coefficients, a Noetherian module? In this paper we provide, over the ring of p-adic integers, such a generalization to p-compact groups of the Evens–Venkov Theorem.
Andersen, Kasper K. S.+4 more
openaire +7 more sources
Maximal symplectic torus actions
Abstract There are several different notions of maximal torus actions on smooth manifolds, in various contexts: symplectic, Riemannian, complex. In the symplectic context, for the so‐called isotropy‐maximal actions, as well as for the weaker notion of almost isotropy‐maximal actions, we give classifications up to equivariant symplectomorphism.
Rei Henigman
wiley +1 more source
Quasi-Elliptic Cohomology of 4-Spheres
It is a famous hypothesis that orbifold D-brane charges in string theory can be classified in twisted equivariant K-theory. Recently, it is believed that the hypothesis has a non-trivial lift to M-branes classified in twisted real equivariant 4 ...
Zhen Huan
doaj +1 more source
Bott-Chern hypercohomology and bimeromorphic invariants
The aim of this article is to study the geometry of Bott-Chern hypercohomology from the bimeromorphic point of view. We construct some new bimeromorphic invariants involving the cohomology for the sheaf of germs of pluriharmonic functions, the truncated ...
Yang Song, Yang Xiangdong
doaj +1 more source