Results 41 to 50 of about 4,558 (244)
Abelian Livšic theorems for Anosov flows
Abstract We give two short proofs of the abelian Livšic theorem of Gogolev and Rodriguez Hertz. We show that these proofs may be extended to give new abelian Livšic theorems for positive density sets of null‐homologous orbits and for amenable covers.
Richard Sharp
wiley +1 more source
On bounded cohomology of amalgamated products of groups
We investigate the structure of the singular part of the second bounded cohomology group of amalgamated products of groups by constructing an analog of the initial segment of the Mayer-Vietoris exact cohomology sequence for the spaces of pseudocharacters.
Igor V. Erovenko
doaj +1 more source
Relational Bundle Geometric Formulation of Non‐Relativistic Quantum Mechanics
Abstract A bundle geometric formulation of non‐relativistic many‐particles Quantum Mechanics is presented. A wave function is seen to be a C$\mathbb {C}$‐valued cocyclic tensorial 0‐form on configuration space‐time seen as a principal bundle, while the Schrödinger equation flows from its covariant derivative, with the action functional supplying a ...
J. T. François, L. Ravera
wiley +1 more source
The Serre duality theorem for Reimann surfaces
Given a Riemann surface S, there exists a finitely generated Fuchsian group G of the first kind acting on the upper half plane U, such that S≅U/G. This isomorphism makes it possible to use Fuchsian group methods to prove theorems about Riemann surfaces ...
Ranjan Roy
doaj +1 more source
On algebraic characterizations for finiteness of the dimension of EG [PDF]
Certain algebraic invariants of the integral group ring ZG of a group G were introduced and investigated in relation to the problem of extending the Farrell-Tate cohomology, which is defined for the class of groups of finite virtual cohomological ...
Olympia Talelli
doaj +1 more source
Comments on the RG‐Flow in Open String Field Theory
Abstract We define a metric G$G$ on the KBc‐subalgebra modulo gauge and describe the worldsheet RG‐flow as the gradient flow of the action of cubic open string field theory, where the flow lines are kink‐solitons. In particular, for a constant tachyon the gradient flow equations are equivalent to the RG‐equations. Additionally, a more general family of
Julius Hristov
wiley +1 more source
Co-prolongations of a group extension [PDF]
The aim of this paper is to study co-prolongationsof central extensions. We construct the obstruction theory forco-prolongations and classify the equivalence classes of these by kernels of ahomomorphisms between 2-dimensional cohomology groups of groups.
Nguyen Thi Thu Thuy +2 more
doaj
Compactifications of strata of differentials
Abstract In this informal expository note, we quickly introduce and survey compactifications of strata of holomorphic 1‐forms on Riemann surfaces, that is, spaces of translation surfaces. In the last decade, several of these have been constructed, studied, and successfully applied to problems.
Benjamin Dozier
wiley +1 more source
Maximal symplectic torus actions
Abstract There are several different notions of maximal torus actions on smooth manifolds, in various contexts: symplectic, Riemannian, complex. In the symplectic context, for the so‐called isotropy‐maximal actions, as well as for the weaker notion of almost isotropy‐maximal actions, we give classifications up to equivariant symplectomorphism.
Rei Henigman
wiley +1 more source
A note on the cohomology of moduli spaces of local shtukas
Abstract We study localized versions of spectral action of Fargues–Scholze, using methods from higher algebra. As our main motivation and application, we deduce a formula for the cohomology of moduli spaces of local shtukas under certain genericity assumptions, and discuss its relation with the Kottwitz conjecture.
David Hansen, Christian Johansson
wiley +1 more source

