Results 61 to 70 of about 4,558 (244)
The cohomology of Bestvina–Brady groups
For each subcomplex of the standard CW-structure on any torus, we compute the homology of a certain infinite cyclic regular covering space. In all cases when the homology is finitely generated, we also compute the cohomology ring. For aspherical subcomplexes of the torus, our computation gives the homology of the groups introduced by M. Bestvina and N.
Ian J. Leary, Müge Saadetoğlu
openaire +4 more sources
Boundary representations of locally compact hyperbolic groups
Abstract We develop the theory of Patterson–Sullivan measures for locally compact hyperbolic groups. This theory associates to certain left‐invariant metrics on the group measures on its boundary. Next, we establish irreducibility of the resulting (unitary) Koopman representations for second countable, nonelementary, unimodular locally compact ...
Michael Glasner
wiley +1 more source
We discuss the calculation of integral cohomology ring of LG/T and ΩG. First we describe the root system and Weyl group of LG, then we give some homotopy equivalences on the loop groups and homogeneous spaces, and calculate the cohomology ring structures
Cenap Özel, Erol Yilmaz
doaj +1 more source
Cohomology of Presheaves of Monoids
The purpose of this work is to extend Leech cohomology for monoids (and so Eilenberg-Mac Lane cohomology of groups) to presheaves of monoids on an arbitrary small category.
Pilar Carrasco, Antonio M. Cegarra
doaj +1 more source
Cohomology of manifolds with structure group $U(n)\times O(s)$ [PDF]
Paweł Raźny
openalex +1 more source
The integral cohomology of the Bianchi groups [PDF]
We calculate the integral cohomology ring structure for various members of the Bianchi group family. The main tools we use are the Bockstein spectral sequence and a long exact sequence derived from Bass-Serre theory.
openaire +2 more sources
GL‐algebras in positive characteristic II: The polynomial ring
Abstract We study GL$\mathbf {GL}$‐equivariant modules over the infinite variable polynomial ring S=k[x1,x2,…,xn,…]$S = k[x_1, x_2, \ldots, x_n, \ldots]$ with k$k$ an infinite field of characteristic p>0$p > 0$. We extend many of Sam–Snowden's far‐reaching results from characteristic zero to this setting.
Karthik Ganapathy
wiley +1 more source
Quasi-Elliptic Cohomology of 4-Spheres
It is a famous hypothesis that orbifold D-brane charges in string theory can be classified in twisted equivariant K-theory. Recently, it is believed that the hypothesis has a non-trivial lift to M-branes classified in twisted real equivariant 4 ...
Zhen Huan
doaj +1 more source
Cohomotopy sets of (n−1)$(n-1)$‐connected (2n+2)$(2n+2)$‐manifolds for small n$n$
Abstract Let M$M$ be a closed orientable (n−1)$(n-1)$‐connected (2n+2)$(2n+2)$‐manifold, n⩾2$n\geqslant 2$. In this paper, we combine the Postnikov tower of spheres and the homotopy decomposition of the reduced suspension space ΣM$\Sigma M$ to investigate the (integral) cohomotopy sets π*(M)$\pi ^\ast (M)$ for n=2,3,4$n=2,3,4$, under the assumption ...
Pengcheng Li, Jianzhong Pan, Jie Wu
wiley +1 more source

