Results 151 to 160 of about 765,002 (285)

A Functionality‐Graded Cathode Electrolyte Interphase Enables Ultra‐Long Cycling Stability in Aqueous Zn–Mn Batteries

open access: yesAdvanced Science, EarlyView.
Through the interfacial reaction of KH2PO4, a functionally graded CEI with hydrated, organic, and inorganic layers is constructed. This suppresses interfacial water corrosion, mitigates volume stress, and promotes charge carrier transport, achieving superior battery stability.
Kaisheng Sun   +7 more
wiley   +1 more source

Gaze strategy and sense of ownership in learning prosthetic control: a comparative study using wearable eye tracking. [PDF]

open access: yesJ Neuroeng Rehabil
Yoshimura M   +7 more
europepmc   +1 more source

Regulating Zinc Anode Interface with an Environmental Biomass‐Derived Additive for Long‐Lifespan Aqueous Batteries

open access: yesAdvanced Science, EarlyView.
A biomass‐derived additive synthesized from chitin, 3‐acetylamino‐5‐acetylfuran (3A5AF), resolves key stability issues such as uncontrolled dendrite growth, hydrogen evolution reaction, and corrosion of zinc anodes by reconstructing the solvation structure of the electrolyte and protecting the anode interface. ABSTRACT Aqueous zinc‐based batteries face
Bingbo Ni   +5 more
wiley   +1 more source

Redox Oligomer Assembling Hierarchical Reinforced Framework Cathodes for Ultra‐Stable High‐Performance Zinc‐Ion Batteries

open access: yesAdvanced Science, EarlyView.
Redox phenoxoline‐benzoquinone oligomer has been designed as reinforced concrete framework like freestanding cathodes for high‐performance ZIBs. An optimal specific capacity of 339.5 mAh g−1 was contributed with exceptional retention of 87.5% after 65 000 cycles at 10 A g−1. Flexible energy storage is also demostrated.
Shuang Liu   +3 more
wiley   +1 more source

AlF3 Mediated In‐Situ Cathode Interface Stabilization Enables High‐Rate and Long‐Life Na‐Ion Batteries at Elevated Temperature

open access: yesAdvanced Science, EarlyView.
Ultrathin AlF3 coating facilitates the formation of an inorganic‐dominated cathode electrolyte interphase (CEI), predominantly composed of NaF/AlF3/NaAlF4. This CEI layer effectively suppresses detrimental interfacial side reactions while simultaneously enhancing the diffusion kinetics of Na+.
Ya‐Meng Yin   +9 more
wiley   +1 more source

A Si‐MoSe2 Heterostructured Anode with Enhanced Thermal Transport and Electrochemical Performance for Liquid and All‐Solid‐State Lithium‐Ion Batteries

open access: yesAdvanced Science, EarlyView.
Chemically bonded Si@MoSe2@C heterointerfaces with robust Si─Se─Mo bonds enable high‐performance Si anodes. Lattice‐matched MoSe2 on porous Si with carbon‐protective coating delivers 1054 mAh g−1 after 100 cycles and 99.5% Coulombic efficiency over 400 cycles.
Yajun Zhu   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy