Results 201 to 210 of about 5,577,681 (379)
Wearable Haptic Feedback Interfaces for Augmenting Human Touch
The wearable haptic feedback interfaces enhance user experience in gaming, social media, biomedical instrumentation, and robotics by generating tactile sensations. This review discusses and categorizes current haptic feedback interfaces into force, thermal, and electrotactile stimulation‐based haptic feedback interfaces, elucidating their current ...
Shubham Patel+3 more
wiley +1 more source
The seed pod valves of Australian Banksia attenuata plants are not simply bi‐layers which bend when dry. These experiments and models reveal complex mechanics, which allow seed release only after several steps of seed pod opening. Stiffness gradients prevent delamination of the valves during loading, and a shape‐memory function protects the seeds ...
Friedrich Reppe+7 more
wiley +1 more source
This work investigates the Nernst effect in the Kagome magnet ErMn6Sn6 which exhibits both topological and anomalous Nernst effects with the anomalous Nernst coefficient reaching 1.71 µV K⁻¹ at 300 K. This value surpasses that of most canted antiferromagnetic materials, making ErMn6Sn6 a promising candidate for advancing thermoelectric devices based on
Olajumoke Oluwatobiloba Emmanuel+2 more
wiley +1 more source
In hyperconvex metric spaces, we first present a coincidence point theorem for condensing set-valued self-maps. Then we consider the best approximation problem and the best proximity problem for set-valued mappings that are condensing. As an application,
Farajzadeh AP+3 more
doaj
A materials and device design concept that comprises a self‐assembled ultra‐thin epitaxial ion‐transporting layer, an amorphous oxide overcoat oxygen‐blocking layer, and a partial filament formed during an electroforming step is proposed for low‐current multilevel resistive switching devices.
Ming Xiao+17 more
wiley +1 more source
Glioblastoma multiforme is the most devastating and incurable brain tumor. To better study this disease, a 3D model is developed using a hyaluronic acid‐based hydrogel combined with a multicellular approach. This model recapitulates in vivo brain stiffness, cell‐extracellular matrix and cell‐cell interactions and the tumor's hijacking function with the
Mateo S. Andrade Mier+26 more
wiley +1 more source
The negative differential resistance is exploited, using a La0.67Sr0.33MnO3 thin film network to demonstrate various neuronal functionalities of the human brain, such as leaky‐integrate‐fire and oscillatory patterns. Transmission electron microscope studies show local modification in oxygen octahedra in the network leads to co‐existing phases ...
Azminul Jaman+6 more
wiley +1 more source
In this work, melt electrowriting is used to fabricate a 3D printed scaffold design that generates engineered cardiac tissues with in‐plane contraction, mimicking natural myocardium. It is shown that these tissues display advanced maturation and functionality.
Olalla Iglesias‐García+23 more
wiley +1 more source
A novel stratum corneum‐inspired zwitterionic hydrogel is developed for intelligent, flexible sensors, featuring intrinsic water retention and anti‐freezing properties. The quasi‐gel, composed of hygroscopic polymers and bound water, maintains its softness across a wide range of humidity.
Meng Wu+8 more
wiley +1 more source
Tunable Tactile Synapses Enabled by Erasable Doping in Iongel‐Gated Nanotube Network Transistors
Artificial tactile synaptic sensors are realized by an iongel‐gated single‐walled carbon nanotube (SWCNT) transistor with reversible doping characteristics. The device senses and memorizes tactile stimuli and exhibits gate bias‐dependent excitatory or inhibitory synaptic behavior.
Yan Huang+5 more
wiley +1 more source