Results 201 to 210 of about 480,477 (362)

Designing for Degradation: Transient Devices Enabled by (Nano)Cellulose

open access: yesAdvanced Materials, EarlyView.
Recent progress in transient devices enabled by (nano)cellulosic materials is reviewed. Transiency mechanisms, advantages of nanocelluloses, and a suite of applications are discussed. A circular thinking approach coupled with life cycle assessment is applied to critically revisit the potential, advantages, and challenges of nanocellulose‐enabled ...
Lucas J. Andrew   +2 more
wiley   +1 more source

Water and Collagen: A Mystery Yet to Unfold. [PDF]

open access: yesBiomacromolecules
Giannetti G   +8 more
europepmc   +1 more source

Functional Biomaterials Derived from Protein Liquid–Liquid Phase Separation and Liquid‐to‐Solid Transition

open access: yesAdvanced Materials, EarlyView.
Protein can undergo liquid–liquid phase separation and liquid‐to‐solid transition to form liquid condensates and solid aggregates. These phase transitions can be influenced by post‐translational modifications, mutations, and various environmental factors.
Tianchen Li   +3 more
wiley   +1 more source

Advances in Photonic Materials and Integrated Devices for Smart and Digital Healthcare: Bridging the Gap Between Materials and Systems

open access: yesAdvanced Materials, EarlyView.
This article summarizes significant technological advancements in materials, photonic devices, and bio‐interfaced systems, which demonstrate successful applications for impacting human healthcare via improved therapies, advanced diagnostics, and on‐skin health monitoring.
Seunghyeb Ban   +5 more
wiley   +1 more source

Engineering Magnetotactic Bacteria as Medical Microrobots

open access: yesAdvanced Materials, EarlyView.
Magnetotactic bacteria (MTB) are living microorganisms that produce magnetosomes for navigation using the Earth's geomagnetic field. Their built‐in magnetic components, along with their intrinsic and/or modified biological functions, make them one of the most promising platforms for making future living and programmable microrobots.
Jiaqi Wang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy